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The increasing popularity of Unmanned Aerial Vehicle (UAV) swarms is attributed to their ability to generate substantial

returns for various industries at a low cost. Additionally, in the future landscape of wireless networks, UAV swarms can serve

as airborne base stations, alleviating the scarcity of communication resources. However, UAV swarm networks are vulnerable

to various security threats that attackers can exploit with unpredictable consequences. Against this background, this paper

provides a comprehensive review on security of UAV swarm networks. We begin by briely introducing the dominant UAV

swarm technologies, followed by their civilian and military applications. We then present and categorize various potential

attacks that UAV swarm networks may encounter, such as denial-of-service attacks, man-in-the-middle attacks and attacks

against Machine Learning (ML) models. After that, we introduce security technologies that can be utilized to address these

attacks, including cryptography, physical layer security techniques, blockchain, ML, and intrusion detection. Additionally, we

investigate and summarize mitigation strategies addressing diferent security threats in UAV swarm networks. Finally, some

research directions and challenges are discussed.
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CCS Concepts: · Security and privacy → Mobile and wireless security; · Networks → Ad hoc networks; · Computer

systems organization → Robotics.

Additional Key Words and Phrases: UAV swarm networks, security technologies, network attacks, security countermeasures

1 Introduction

The inception of the irst Unmanned Aerial Vehicle (UAV) traces back to 1916, when a British engineer named
Archibald Low developed a radio-controlled lying device. However, due to various technologies being in their
nascent stage, the development of UAVs was severely restricted. This situation persisted until the outbreak of the
Second World War. After that, UAVs entered the irst phase of rapid development. Some countries began using
UAVs for military purposes, including reconnaissance and bombing missions. However, after the end of World
War II, the development of UAVs entered a relatively stagnant period.

In the 1990s, the rapid development of microelectronics and computer technology brought about a new
opportunity for the second phase of UAV development. Small UAVs emerged and gradually entered the civilian
sector. The lexibility and maneuverability of UAVs made them suitable for various applications, including
agriculture [1], search and rescue operations [2], emergency communications [3], and natural disaster prevention
[4]. However, when the demand for UAV applications increases, individual UAVs encounter certain limitations.
For instance, during search and rescue missions, covering large areas may require multiple round trips or the
coordination of multiple operators controlling separate UAVs, resulting in time and resource ineiciencies.
Additionally, densely populated areas may require mobile Base Stations (BSs) to alleviate pressure on existing
infrastructure. However, if a densely populated area is large enough to require more than one vehicle-mounted
mobile BS, this can lead to a waste of resources. To resolve these challenges, UAV swarms emerge.

UAV swarm refers to a collection of UAVs connected through networking technologies and coordinated through
collaborative control techniques to achieve intercommunication and data sharing. UAV swarms ofer numerous
advantages when executing complex tasks. First, there are multiple low-cost devices that cooperate to improve
eiciency in the UAV swarm network; Second, data sharing among UAVs improves accuracy and coverage of
task execution. Last, the failure of a few individual UAVs does not impact the overall performance of the swarm.
These advantages lead to the widespread popularity of UAV swarms across various areas, including rescue [5],
area coverage[6], and military attacks [7] and defense [8]. However, malicious attackers may employ various
methods to obstruct, disrupt, and gain control over UAV swarms. Therefore, ensuring security of UAV swarms
throughout all phases of their operations becomes an imperative requirement.

1.1 Related Surveys and Contributions

As a research ield that has emerged in recent years, there has been signiicant attention given to issues related to
the security of UAVs. Some surveys have been conducted on this topic.

There is research on UAV security. Authors in [9] address concerns at the physical layer, and discuss counter-
measures such as trajectory design. Authors in [10, 11] focus on physical, application, and system layers of UAV
security. The survey in [10] intricately examines the network security of Unmanned Aircraft Systems (UASs).
The paper [11] studies the network and physical security of the Internet of Drones (IoDs) and introduces the
captivating concept of “impact chainsž.
Conversely, authors in [12ś14] shed light on security aspects from physical, network, and application layers.

The work in [12] underscores the challenges faced by safety-critical drones, summarizing Blockchain (BC)

and Machine Learning (ML) solutions. Authors of [13] discuss security threats in drone communications,
emphasizing physical and network layers. The work in [14] investigates security in centralized and distributed
networks, advocating for BC solutions.
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[9]
A survey on passive and active eavesdropping
attacks in UAS, emphasizing defense techniques

and their practical applications.

√
× × ×

√
×

[10]
A review on UAS security, categorizing

threats into four areas and exploring cyber-
attack and defense technologies.

√
×

√ √ √
×

[11]
A comprehensive review of IoD’s network
and physical security, detailing threats,

assets, and countermeasures.

√
×

√ √ √
×

[12]
A review of drone security challenges,
focusing on communication threats and

emerging solutions.

√ √ √
×

√
×

[13]
A review on UAV communication security,

emphasizing challenges and countermeasures
in physical and network layers.

√ √ √
×

√
×

[14]
A survey on challenges and potential solutions

of 5G UAV network security.

√ √ √
×

√
×

[15]
A survey on UAV security and privacy,

examining vulnerabilities, threats, attacks,
and countermeasures.

√ √ √ √ √
×

[16] A review on UAV-based system vulnerabilities,
charging attacks, and their mitigations.

√ √ √ √ √
×

[17]
A review of cybersecurity for commercial

UAVs, highlighting key threats and
evolving countermeasures.

√ √ √ √ √
×

[18]
A survey on UAV security in FANETs,

analyzing threats and solutions via the OSI
model’s irst four layers.

√ √ √
× ×

√

UAV
swarm

networks
Ours

A review on security issues, corresponding
technologies, countermeasures and
challenges of UAV swarm networks.

√ √ √ √
×

√

(ł
√
ž if mention the corresponding content, ł×ž if not.)

Additionally, studies in [15ś17] ofer holistic insights into UAV network security from hardware to software.
Authors in [15] conduct a thorough investigation into security and privacy issues of centralized UAV networks.
In contrast, authors in [16] emphasize attacks on drone and charging systems. Authors in [17] present a com-
prehensive review of network security for commercial small drones, detailing key threats, vulnerabilities, and
countermeasures. Finally, Tsao et al. in [18] delve deeply into the security of Flying Ad-Hoc Networks (FANETs)

and IoD, referencing the OSI model.
The above surveys concentrate mainly on the security concerns of UAVs, and are limited to the security of

networks or speciic components of UAVs, UAS and IoDs. Even though the authors in [18] consider the security
of self-organizing UAV swarm networks, they have not fully addressed the comprehensive security concerns

ACM Comput. Surv.



4 • X. Wang et al.

of UAV swarms. In contrast, this survey concentrates on security issues of UAV swarm networks, and aims to
provide readers with insights into corresponding attacks and potential security challenges. Additionally, readers
can also thoroughly understand the latest developments of security countermeasures in UAV swarm networks.
Table 1 showcases the reviews conducted in the ield of UAV security.

To the best of our knowledge, we are the irst to summarize security issues, corresponding technologies

and solutions in UAV swarm networks. The main contributions of this article are as follows:

· We irst survey technologies of UAV swarm networks and categorize related applications, which lay a solid
foundation for understanding various security issues.

· We then discuss vulnerabilities in UAV swarm networks, followed by a comprehensive overview of security
threats posed to communications, networks, data and ML models. Additionally, we summarize defense
techniques employed to safeguard UAV swarm networks, including conventional cryptography, Physical
Layer Security (PLS) and BC. Through these discussions, it provides a forward-looking knowledge for
the subsequent mitigation measures.

· Finally, we investigate security countermeasures against various attacks in UAV swarm networks based on
diferent security threats, and present open issues and research challenges.

1.2 Structure

The rest of this article is organized as follows. Section 2 introduces the UAV swarm network and its applications
in both civilian and military domains. Section 3 discusses potential vulnerabilities and attacks on UAV swarm
networks. Section 4 irst present technologies to ensure network security, and provides several countermeasures
to against attacks on UAV swarm networks, corresponding to the identiied attack categories. Research challenges
and open issues are provided in Section 5. A summary of this survey is given in Section 6.

2 UAV Swarm Networks and Its Applications

In this section, we introduce key technologies and applications of UAV swarm networks.

2.1 UAV Swarm Networks

The successful operation of a UAV swarm network relies on several key aspects, including formation control,
autonomous navigation, security and privacy [19]. In the following, we primarily discuss the architecture,
communication networking, and navigation technologies of UAV swarm networks.

2.1.1 The Network Architecture. The structure of UAV swarm networks forms the foundation for swarm estab-
lishment, including communication and networking techniques.
Centralized control is one architecture used in UAV swarm networks. Here, a central controller governs all

UAVs, but this method faces scalability limitations and a risk of single-point failures [20]. It’s more common in
traditional UAV networks due to its high computational and bandwidth demands.

In contrast, distributed architectures, where UAVs communicate among themselves and operate autonomously,
are more prevalent in UAV swarms. These networks are resilient and adaptable, excelling in collaborative
eiciency and broad-area coverage. They are preferred for their adaptability in dynamic environments and
resource optimization capabilities but face challenges in communication and connectivity [21].

Hybrid architectures combine centralized and distributed frameworks’ beneits, ofering computational capa-
bilities and broad coverage. This design is commonly adopted in UAV swarm networks to cater to diverse task
requirements.
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2.1.2 Communication and Networking Technologies. Once the architecture is determined, speciic networking
and communication techniques must be conirmed to meet the requirement of diferent tasks with in the UAV
swarm.

There are several categories of communication technologies utilized for UAV swarm networks. The common
method utilizes cellular networks, such as 4G and 5G, to enable connectivity with ground BSs [22, 23]. The
second approach leverages satellite communication, ofering extensive coverage, albeit potentially unsuitable for
time-sensitive applications [22]. The third category utilizes Internet-based methods, such as WiFi 802.11, which
boasts low costs and latency, making it practical for tasks like video streaming [22, 23]. Last, techniques such
as MmWave, cognitive radio, and LoRa provide alternative solutions for speciic scenarios within UAV swarm
communications.

Once the networking technology is chosen, the corresponding routing protocols need to be determined. Based
on descriptions in [24, 25], existing UAV swarm routing protocols can be categorized into the following categories:
Topology-based routing protocols: These protocols use the topology of moving nodes to exchange data

packets. They can be further divided into lat-based and hierarchical protocols. The former utilizes planar
addressing, with UAVs sharing similar roles [25], while the latter operates in clusters with communication
mediated through a cluster head. An example is the mobility prediction clustering algorithm [25].

Location-based routing protocols: They make routing decisions based on the geographical position informa-
tion of nodes, rather than relying on traditional IP addresses or node identiiers used in conventional networks,
for example, mobility prediction-based geographic routing [25].

Swarm intelligence-based routing protocols: They draw inspiration from biological behavior, taking cues
from the behavior of insects like bees, ants, and particle swarms. The ant-based geographical routing algorithm
is an example of such a protocol [25].

2.1.3 Navigation Technologies. They play a vital role in ensuring the safe and coordinated light of UAV swarms,
and mainly comprise three aspects: localization, path planning, and collision avoidance and formation control.

Localization technologies: They serve as the foundation for UAV swarm navigation, determining the precise
location of each UAV in three-dimensional (3D) space. Localization techniques typically rely on Global

Positioning Systems (GPSs), inertial navigation systems, and sensor-based positioning techniques (such as
visual localization [26]).

Path planning: It primarily aims to determine the optimal light paths and control a swarm of UAVs in
real time, considering mission objectives, obstacle positions, and light eiciency. A crucial concern in path
planning is maximizing energy eiciency while ensuring collision avoidance and safety [21]. Common techniques
employed include graph-based methods [27], artiicial potential ields, ant colony optimization, and particle
swarm optimization [28].
Collision avoidance and formation control: They are indispensable technologies for UAV swarm light.

Collision avoidance ensures safety during light, while formation control ensures that multiple UAVs maintain
predetermined relative positions and orientations during light. A prevalent UAV collision avoidance approach is
sensor-based detection, utilizing devices such as LiDAR, radar, and cameras [29]. Another technique is inspired by
animal locking behaviors, such as those simulating bird lock movements [30]. Additionally, there are methods
that leverage ML techniques to enhance UAV light [31].
All the aforementioned technologies pave the way for the widespread application and utilization of UAV

swarms in various ields. With the continuous development and integration of these technologies, they are
expected to further enhance the capabilities of UAV swarms, expand their applications, and improve the eiciency
of UAV swarm operations.
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2.2 Applications of UAV swarms

The application of UAV swarms can be divided into two main categories: civilian and military. Civilian UAV
swarms are mainly utilized for work and daily life, such as disaster relief and information coverage enhancement.
Military UAV swarms are primarily used for speciic military tasks, such as reconnaissance and attack [8].

2.2.1 UAV Swarms in Civilian Applications. UAV swarm applications in civil settings can be broadly categorized
into four major areas based on their performance functions: search and rescue [5], surveillance and monitoring
(including area surveillance [6, 32], precision agriculture [33], area coverage [34, 35] and multi-user dynamic
uninstallation [36ś38]), transportation services [39], and construction and infrastructure inspection [40]. While
these classiications do not encompass all possible applications, they provide a useful framework for understanding
the diverse uses of UAV swarms.
Search and Rescue: UAV swarms ofer vital communication services in disaster-stricken areas. UAVs, with

their mobility and ability to bypass geographical constraints, can function as wireless communication bases, relays,
or servers, providing crucial communication resources in emergencies [41]. They overcome challenges faced by
rescue personnel in locating individuals and sharing information, especially when traditional communication
infrastructure is damaged.
Surveillance and Monitoring: For surveillance and monitoring of public spaces, UAV swarms outperform

traditional systems with ixed cameras that sufer from blind spots and limited deployment lexibility. Equipped
with cameras, UAVs can be strategically placed to monitor vehicles, pedestrians, and provide cooperative perimeter
surveillance [32].

Transportation Services: UAV swarms present a unique advantage by potentially replacing manual methods
in the inal leg of delivery, ofering fast and cost-efective solutions, and alleviating manpower demands [42].

Construction and Infrastructure Inspection: In the construction industry, UAVs assist in aerial mapping,
site monitoring, and integrity evaluations of projects [43]. They enable simultaneous oversight of multiple
projects, leading to cost savings. Furthermore, UAVs enhance safety by conducting inspections of old buildings
and infrastructure, mitigating risks for inspection personnel.

2.2.2 UAV Swarms in Military Applications. UAV swarms are diicult to detect by conventional radar systems
due to their high maneuverability and small radar cross-section. At the same time, they have low manufacturing
costs and high survivability. They are therefore considered to be highly efective and economical weapons [44].
Based on the functions they fulill, UAV swarms primarily serve the following main purposes in warfare:
Iniltration reconnaissance: Small UAVs, hard to detect by radar due to size and stealth, enable extensive

battleield coverage. This facilitates signiicant real-time data collection, enhancing situational awareness with
rapid data transmission to decision centers [45].

Ofensive strikes: UAV swarms equipped with weapons can conduct surprise attacks and overwhelm enemy
forces through their sheer numbers. By acting in concert, swarms can use collective irepower to eliminate hostile
targets, e.g., Miramshah Airstrike, and Makin Airstrike [7].

Intercepting attacks: On the battleield, the enemy may deploy radar-elusive weapons for attacks. Patrolling
UAV swarms react when targets enter their blast range, launching explosives or self-destructing to neutralize
threats [8].

Materiel transport: Traditional logistical operations often encounter diiculties in battleield environments
characterized by enemy defenses or restricted terrain. Fortunately, UAV swarms operating in the 3D space can
overcome these limitations, by ensuring a continuous and uninterrupted supply of materiel to the battleield.

With the development of technology, the scope of UAV swarm applications is expanding signiicantly. Concur-
rently, the increase in the use of UAV swarms brings concerns to security. The following section will outline
current security challenges associated with UAV swarm networks and available security technologies.

ACM Comput. Surv.
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3 Atacks in UAV Swarm Networks

In this section, we irst discuss why UAV swarm networks are vulnerable. Next, we describe existing or potential
attacks in UAV swarm networks and classify them based on the consequences they cause.

3.1 Vulnerabilities of UAV Swarm Networks

Compared to current communication networks with ixed architectures, UAV swarm networks lack several
key components including a uniied network architecture, an efective network security model, a behavioral
assessment mechanism, a defense method for attacks, and proactive routing protocols [20]. We summarize these
challenges in six aspects: communication, identity, resource, routing, data, and ML model.

3.1.1 Communication Vulnerabilities. The communications infrastructure for swarm networks relies on radio
frequency technology and the Long Term Evolution standard, but these technologies have revealed several
key vulnerabilities in practice. First, LTE technologies often run on top of so-called “commercial of-the-shelfž
hardware and software, while cost-efective and ubiquitous, which may contain security vulnerabilities and
provide potential entry points for cyber attackers [46]. Second, the open wireless channels that UAV swarms
rely on can also be picked up by attackers due to their inherent broadcast nature, making them susceptible to
eavesdropping; at the same time, this broadcast nature also makes the network susceptible to jamming, which can
be used by illegal users to interrupt legitimate communication streams, posing a serious threat to UAV control
and data transmission [47]. Currently, the communication bands used for UAVs are ultra-high frequency, L-band
or C-band, and attackers can use tools, such as USRP developed by National Instruments, HackRF developed by
Great Scott Gadgets, and software including GNU Radio and GQRX, to eavesdrop on the wireless signals or emit
high-powered jamming signals. Additionally, since most jamming attacks act directly on the physical layer and
there are relatively limited efective countermeasures against physical layer jamming, this poses a great challenge
to traditional defense strategies [48]. To make matters worse, most UAVs on the market are not designed with
anti-jamming features [49].

3.1.2 Identity Vulnerabilities. Identity-based attacks are one of the most serious threats to wireless networks
[50]. Although modern encryption mechanisms provide strong data protection for UAV swarm networks, packets
transmitted in wireless environments may still be at risk of being intercepted by third parties [51]. For example,
an attacker could utilize advanced devices such as software-deined radio (SDR) devices (which have been
developed by Rohde & Schwarz to capture data from wireless signals of UAVs) to listen in and capture wireless
signals in a UAV network. Once attackers successfully intercept these signals and parse out identity information
from them, they can potentially impersonate legitimate users and iniltrate the network. In this case, the attacker
not only gains a comprehensive view of the network, but also performs malicious operations such as packet
dropping, which can severely damage the integrity and availability of the network. Moreover, designing multi-
factor user authentication schemes is challenging because wireless communication protocols face powerful
adversaries and resource-constrained hardware [52].
In addition, rapid changes in the location of drones can lead to unstable network connectivity, which in

turn afects the quality and reliability of data transmission [53]. In such cases, maintaining a stable link and
accurately detecting the state of each node in the network becomes a challenging task [24], further exacerbating
the complexity of the authentication and authorization processes.

3.1.3 Resource Vulnerabilities. UAV swarm networks are highly susceptible to resource exhaustion attacks due
to their limited computational and communication resources. For example, attackers can use tools such as the
‘aireplay-ng’ module of Aircrack-ng to consume device resources by forcing UAV communications based on Wi-Fi
to reconnect repeatedly, or they can use YateBTS to simulate a pseudo-base station to trick UAVs into connecting,
thereby controlling their communications and further implementing attacks. These attacks can lead to bandwidth
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exhaustion and drone power depletion in the swarm network, which may ultimately trigger network service
disruption or complete collapse, especially in latency-sensitive missions.

Additionally, attackers may plant ‘sleeper’ malware (e.g., Havex and Stuxnet), which may appear harmless in
normal time, but can initiate destructive actions at speciic moments or when triggered by remote commands.
Since this ‘sleep-activate’ mode is diicult to detect and defend against, it further complicates the security threat
of UAV swarm networks.

3.1.4 Routing Vulnerabilities. UAV swarm networks, due to their wide coverage and dynamically changing
nature, need to rely on complex multi-hop routing mechanisms to ensure eicient data transmission. However,
it’s dynamic and highly dependent network structure becomes a potential weak point. Attackers can use tools
such as AODV-UU, OMNeT++ and NS-3 to discover and exploit vulnerabilities in routing protocols. For example,
by forging routing update messages, an attacker can trigger a black hole attack that results in packets being
absorbed and dropped by malicious nodes. By tampering with routing information, an attacker can redirect
packets to route along the wrong path or directly drop them, thus severely disrupting data transmission within
the network.

Additionally, the attacker may also launch other attacks by forging routing information and creating optimal
paths to direct data to malicious nodes. Under such attacks, communications among UAVs may be eavesdropped,
tampered with, or blocked altogether, thus severely disrupting the connectivity and data integrity of the UAV
swarm network.

3.1.5 Data Vulnerabilities. In the absence of efective data authentication mechanisms, UAV swarm networks
face a serious challenge in ensuring data integrity and reliability of data sources. This absence makes the network
highly vulnerable to various types of attacks. Attackers can exploit this vulnerability to tamper with or falsify
critical data, such as UAV position information, sensor readings, and light commands, which can lead to serious
deviations in UAV operations. For example, by injecting false data packets, an attacker can mislead the UAV’s
navigation system, causing it to deviate from its intended trajectory; If the attacker tampers with sensor data, the
UAV can even make incorrect judgements about environmental conditions, which in turn afects its decision-
making process. Injecting false packets requires the previously mentioned identity attacks to be launched as a
base, while tampering with sensor data does not. For example, the GPS-SDR-SIM developed by Takuji Ebinuma of
Japan, used in conjunction with a number of SDR devices (ADALM-Pluto, BladeRF, HackRF and USRP), can lead
to the tampering of UAV GPS sensor data [54]. All the above attacks not only threaten the safety of individual
UAVs, but can also afect the coordination and cooperation of an entire leet of UAVs, triggering a chain reaction
that can lead to mission failure or physical damage.

3.1.6 ML Model Vulnerabilities. ML technology has been widely adopted in UAV swarm networks in a number
of critical areas, such as power and energy transfer, communication resource allocation, light path planning,
target identiication and monitoring [55ś57]. However, with the increasing popularity of ML in UAV networks,
its inherent security vulnerabilities have gradually surfaced as a problem that cannot be ignored. Attackers
are able to take advantage of the inherent vulnerabilities of ML models, such as adversarial examples or data
contamination during model training, to mislead the decision-making process of UAVs and severely weaken the
overall operational efectiveness and reliability of the network.

To carry out these attacks, attackers can use a variety of existing tools. For example, Foolbox [58] and CleverHans
[59] are capable of generating adversarial samples that could potentially lead UAVs to make erroneous decisions
during target identiication and path planning. The Adversarial Robustness Toolbox [60] ofers a comprehensive
suite of tools that not only generate adversarial samples but also perform model poisoning attacks, disrupting
the model training process by tampering with training data. Additionally, DeepFool [61] specializes in creating
minimally perturbed adversarial samples for vision models, which could signiicantly impair a UAV’s ability to
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correctly recognize targets. HopSkipJumpAttack [62] can generate adversarial samples in a black-box environment,
targeting models deployed on UAVs even when the model’s internal details are undisclosed.

3.2 Atacks in UAV Swarm Networks

Based on the aforementioned overview, we classify attacks on UAV swarm networks into six categories: com-
munication security, identity security, resource security, routing security, data security, and ML security. In
real-world scenarios, attackers often utilize multiple attack methods simultaneously to achieve their objectives.
In the following, we discuss these attacks in detail.

3.2.1 Communication Atacks for UAV Swarm Networks. Communication attacks in UAV swarm networks can
be classiied into two main categories: eavesdropping and jamming attacks [63]. The schematic diagram of
communication attacks in UAV swarm networks is depicted in Fig. 1.

Packet data

Attacker

Eavesdroping

Jamming

Transmission link

Fig. 1. Communication atacks.

Eavesdropping attacks: They refer to attackers’ passive interception and decryption of wireless signals from
legitimate UAVs. As shown in Fig. 1, the black attacker can intercept the transmitted information by eavesdropping
on a wireless channel. Eavesdropping attacks are categorized into passive and active eavesdropping. Passive
eavesdropping usually requires knowledge of perfect CSI information, and thus most eavesdropping is active
eavesdropping attacks. An active eavesdropping attacker usually operates in a full-duplex mode to simultaneously
receive conidential signals and send jamming signals. Jamming signals can reduce the data rate of a legitimate
link, thus making eavesdropping feasible, even if the channel conditions of the eavesdropping link are worse than
those of a suspect link without jamming. Authors in [47, 64, 65] describe active eavesdropping schemes in detail.
Jamming attacks: They refer to attackers deliberately transmitting noise to disrupt the receivers’ ability to

extract original information. Fig. 1 depicts a red attacker emitting jamming signals to interfere with a legitimate
UAV’s reception. Authors in [66] propose a defense concept that uses multiple legitimate UAVs to form a jamming
tracking network, which actively locates and suppresses the malicious UAV’s jamming source. However, an
attacker could take the same steps to counter legitimate UAVs, using multiple malicious UAVs to simultaneously
launch jamming on the communication links of legitimate UAVs, creating a situation that is diicult to defend
against. In reality, there are various devices that can interfere with the communication frequency band of UAV
swarm networks. For example, DroneDefender of Dedrone can generate targeted interference signals in the
frequency band commonly used by UAVs, efectively interfering with their normal operation [67].

3.2.2 Identity-based Atacks. Weaknesses in identity security pose signiicant threats to the integrity and coni-
dentiality of UAV swarm networks. Common attacks targeting UAV identities in UAV swarm networks include
impersonation attacks, replay attacks, and Man-in-the-Middle attacks (MITMs).
Impersonation attacks: They occur when an attacker forges an identity to act as a legitimate user in a

network. The execution of such an attack may stem from the successful capture of a network node, which is
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a common way for attackers to obtain sensitive information and authentication credentials. Authors in [51]
analyze 11 security vulnerabilities in typical user authentication protocols that enable attackers to exploit them to
perform various types of attacks, such as impersonation. Particularly in UAV swarm networks, spooing can lead
to serious consequences. For example, legitimate UAVs are incorrectly quarantined due to conlicting identities,
or critical communications being interrupted, thus seriously undermining trust and security within the network
and afecting the eiciency of collaborative UAV swarm operations and mission execution.
Replay attacks: Attackers record packets and replay them continuously over a period of time without any

modiication. They are usually initiated during the authentication process to compromise the integrity of the
system. Some common wireless network tools, such as Aircrack-ng and Kismet, can be used by attackers to
obtain packets from wireless networks and then launch replay attacks. In addition, authors in [68] propose a tool
called REPLIoT that is able to test the success of replay attacks without prior knowledge of the target device.
Their results show that 75% of the devices are not able to defend against replay attacks.

MITM attacks: In MITM attacks, an attacker covertly inserts themselves into the communication link between
the sender and the receiver, masquerading as a legitimate communication endpoint. As a result, they are able to
intercept, listen to, and even tamper with packets. This process typically involves two key steps: irst, the attacker
intercepts signals and forces devices to connect to their spoofed node through technical means, e.g., exploiting
wireless network vulnerabilities or deploying a mobile user identity capturer such as StingRay; subsequently, the
attacker decrypts the communication content, potentially modifying it, and then re-encrypts and forwards it to
the target, thereby maintaining interaction between the two parties. For example, for UAVs that rely on cellular
networks, an attacker could use a device such as StingRay to launch an MITM attack to control or interfere with
the UAV’s command link.

Sybil attacks: The key to the efectiveness of UAV swarms is eicient collaboration and accurate information
transfer among nodes, which requires that each legitimate node is able to receive and process reliable information
from its peers. However, the vulnerability of this collaborative model is exposed in the face of threats such as
witch attacks. In a witch attack, a malicious entity deceives legitimate network nodes by obfuscating them with
multiple fake nodes. With destructiveness in a variety of contexts, this attack can interfere with data transmission,
launch Distributed Denial-of-Service (DDoS) attacks using the created fake nodes, tamper with network
routes, or even provide false sensor data that can lead to poor decision-making by a swarm of UAVs. In addition,
attackers can manipulate voting and reputation systems within the network by generating a large number of
virtual identities, thereby manipulating group behavior and disrupting overall collaboration [69]. Authors in [70]
analyse the impact of the Sybil attack on P2P systems through a comprehensive simulation study. Similarly, the
UAV swarm network can be considered as a type of P2P network and is threatened by similar attacks.

Remote-to-Local (R2L) and User-to-Root (U2R) attacks: They involve remote attackers exploiting vulner-
abilities to gain unauthorized access to a system [71]. This type of attack is particularly common in Internet of

Things (IoT) devices, which are sometimes equipped with default or weak passwords that make them easy to
target, as exempliied by the Shodan search engine, which is capable of indexing publicly accessible IoT devices
around the globe, including surveillance cameras, routers, and even industrial control systems. With Shodan,
attackers can ind these under-protected devices and then remotely access them using known vulnerabilities or
default credentials to manipulate device functionality, such as changing settings, stealing data, and taking over
the device altogether. For some commercial UAVs that are not protected by strict encryption, an attacker may be
able to launch an R2L or U2R attack, which could lead to disruptions in UAV operations, thereby compromising
data integrity and cybersecurity. For example, researchers from MIT used a network mapping tool to capture
packets from the DJI Phantom 3 Standard and gained access to the root directory from its poor device password
security [46].
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3.2.3 Resource-based Atacks. In UAV swarm networks, network resource attacks primarily include Denial of
Service (DoS) and DDoS attacks, Malware attacks, and hijacking attacks.
DoS attacks: Attackers often launch DoS attacks by exploiting weaknesses in network transport protocols,

system vulnerabilities and service laws. They use these vulnerabilities to send a large number of seemingly
legitimate requests to the UAV swarm system, exhausting critical system resources and triggering bufer overlows.
For example, authors in [72] and [73] experimentally evaluate the impact of DoS attack tools on UAV behaviour,
and show that DoS attacks can lead to network availability issues that afect critical UAV applications, such as
video streaming functionality and command delivery. Even DoS can cause CPU overload which can lead to UAV
crashes [74].

DDoS attacks: They build upon DoS attacks, and coordinate a large number of computers (botnets) to launch
DoS attacks. DDoS attacks typically operate in a client/server model, with the actual attackers hiding behind
the scenes. While traditional DoS attacks focus on weaknesses in the protocol itself, DDoS attacks focus on
weaknesses in the target infrastructure.

Malware attacks: They are an attack vector where the attacker injects malicious software (such as viruses,
worms, Trojans, and spyware) into the target system or device to steal data, control systems, or disrupt device
functionality [75]. Examples include Maldrone, and SkyJack [15]. Maldrone can open backdoors to give attackers
access to sensors and drivers, while SkyJack exploits the weakly encrypted WiFi access points of civilian UAV
systems, both of which are designed to manipulate devices or steal sensitive information without authorization.

Hijacking attacks: In hijacking attacks, the attacker iniltrates the communication network or controls system
of the UAV swarm network to gain control over UAVs [76]. This type of attack aims to manipulate the behavior of
the UAV swarm, and disrupt its functionalities. For example, hackers could use of-the-shelf hobby parts, a stock
DJI Phantom drone, and some open source code to create a UAV that can take over other drones in light [77].

3.2.4 Routing-based Atacks. They aim at maliciously manipulating or disrupting established routing schemes
within the swarm network, including wormhole attacks, black hole attacks, and gray hole attacks. In comparison
with traditional networks, these attacks pose a greater threat to UAV swarm networks [78].

Wormhole attacks: In wormhole attacks within UAV swarm networks, attackers create a virtual tunnel that
rapidly transmits data packets to a diferent network location. This can mislead neighboring nodes into believing
the wormhole tunnel ofers the optimal transmission path [12]. Typically, the path length for routing is usually
greater than the single-hop distance. But in a wormhole attack, an attacker is able to use virtual tunnelling to
enable packets to be transmitted to other network participants, bypassing the normal path. Such attacks not only
lead to severe packet loss, but also provide opportunities for other malicious activities such as data tampering. For
example, authors in [79] show that simulations of wormhole attacks in IEEE 802.15.4-based wireless networks
have revealed packet loss of up to about 50% of the entire network.
Black hole attacks: In UAV swarm networks, a black hole attack involves an attacker broadcasting false

routing information, misleading other devices into routing their packets through the attacker’s node. These black
hole nodes then discard the packets. During such an attack, afected UAVs may lose prolonged contact with the
swarm network, preventing them from receiving crucial decision-making commands and potentially leading
to loss of control. Furthermore, black hole nodes might intercept and analyze packet contents, compromising
sensitive information.

In addition, some studies show that when a mobile self-organising network is subjected to a black hole attack,
which not only leads to a dramatic increase in the packet loss rate, but also has a signiicant increase in the
end-to-end delay [80].

Gray hole attacks: They can be considered as a variant of black hole attacks, but difer from black hole attacks
in that they only drop a portion of data packets, rather than all packets that pass through them. These packets
may be of a speciic type, or from certain IP addresses. Due to their unique attack mechanism, identifying gray
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hole nodes in UAV swarm networks is a challenging task [13]. Authors in [81] evaluate the impact of grey-hole
attacks on wireless networks in the NS-2 simulation tool, and show that grey-hole attacks can severely degrade
the throughput and energy eiciency of communication protocols, as well as increase network latency.

3.2.5 Data Atacks for UAV Swarm Networks. UAV swarm networks involve the transmission and storage of
a signiicant amount of sensitive data and control commands. If attackers gain access to the data, they can
manipulate legitimate data and inject malicious codes to take control of the UAV swarm network easily. In the
following discussion, we explore attacks on data in UAV swarm networks and provide an illustration in Fig. 2.

Malicious packets Packet data

FDIA

UAV Malicious UAV

Attacker SensorInterference control signal

Data link

(b)

Attacked sensor BS

Tampering attack(a) Store data

Fig. 2. Data atacks.

Data tampering attacks: As depicted in Fig. 2(a), data tampering attacks refer to the unauthorized alteration,
manipulation, and disruption of data during transmission and storage processes within UAV swarm networks. Such
tampering signiicantly impacts the performance and stability of the entire system [11]. Speciically, an attacker
may use wireless network listening tools to intercept wireless packets, and subsequently exploit weaknesses
in these packets to decrypt the authentication information of devices as an entry point for intrusion. Once
successfully iniltrated, an attacker can tamper with sensor data, and this falsiied data can mislead the UAV
swarm’s sensing and decision-making mechanisms, causing the system to make decisions based on incorrect
information, and thus perform improper or harmful operations.
This type of attack not only destroys data integrity, but can also cause chain reactions, such as causing

coordination failures among UAVs, afecting mission execution, and even posing a threat to the safety of people
and property.

False Data Injection Attacks (FDIAs): As depicted in Fig. 2(b), within the context of UAV swarm networks,
there are two main means by which an attacker can interfere with the normal operation of the UAV: one is to
tamper with sensor readings and generate misleading data, and the second is to directly inject false information
into the data stream. Both approaches lead to the UAV receiving erroneous sensory data, which in turn afects its
decision-making process and may ultimately result in the UAV performing wrong tasks or behaviours. Authors
in [82] ind that the attack signiicantly increases the estimation error by modelling the efect of a fully covert
FDIA on the state estimation of a networked control system.
GPS spooing: It is an example of FDIA, and attackers transmit false coordinates and timing information to

the target UAV, aiming to gain control over it [83]. For example, four researchers at the University of Texas at
Austin took over a publicly accessible UAV by transmitting spoofed GPS signals. Their attack strategy consists of
capturing real signals from GPS satellites with a spooing device. The spooing device then generates a series of
fake signals to convince the drone receiver to report false position and velocity data [46]. Additionally, attackers
can employ high-power ampliiers and GPS signal simulators, such as rogue BSs and SDRs, to broadcast GPS
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signals that efectively interfere with genuine GPS signals [84]. In many commercial UAVs, the received GPS
signals are not encrypted, making them susceptible to such attacks.

3.2.6 ML Atacks for UAV Swarm Networks. Attacks on ML in UAV swarm networks can be classiied into two
categories: model attacks and privacy attacks.
Model attacks: They include adversarial attacks, backdoor attacks, and data poisoning attacks. Adversarial

attacks aim to deceive the ML model by injecting malicious perturbations into the input data, leading to in-
correct outputs [11]. Backdoor attacks enable the model to function normally with regular inputs but produce
attacker-desired outputs when triggered by speciic inputs [85]. Data poisoning attacks insert incorrect or biased
data samples to manipulate the model’s training process and decision boundaries [86]. If attackers launch the
aforementioned attacks against ML models employed by a UAV swarm, it can easily result in the loss of control
during their operation. For example, authors in [87] demonstrate the harm of adversarial attacks for DL in UAV
swarm networks.

Data privacy attacks: They primarily involve inference attacks and membership inference attacks. The former
exploits the model’s output and gradient information to infer sensitive information about the training data. The
latter aims to determine if speciic data points are used in the model training process by analyzing the model’s
output and the training dataset [88]. For example, an attacker could use PrivacyRaven to develop new privacy
metrics and attacks, and repurpose the attacks to data sources and other use cases [89]. Consequently, when
ML models are utilized, UAV swarms might inadvertently expose data privacy, potentially allowing attackers to
access sensitive information.
In addition, traditional cloud-centric ML technologies, hindered by latency and resource burdens [90], are

often unsuitable for UAV swarm networks. Federated Learning (FL), as a distributed ML algorithm, ofers
solutions like privacy protection, local model training, and reduced network load [91]. However, in UAV swarm
networks, FL still faces risks from the dynamic and heterogeneous nature of UAVs, their limited computational
and communication capabilities, and new attack types during model parameter sharing. For example, model
aggregation attacks aim to compromise FL models by uploading malicious parameters [92], and model privacy
attacks target the privacy of FL through inference on aggregated parameters and data during training. Authors in
[93] propose a RL-based attack framework that learns to identify and exploit weaknesses in the FL system. This
suggests that an attacker could further threaten the security of a UAV swarm network by building a framework
speciically designed to attack FL models.

4 Security Countermeasures for UAV Swarm Networks

In this section, we conduct a thorough review of current security techniques and countermeasures against
attacks in UAV swarm networks. We organize these security measures into six aspects: communication security,
identity security, resource security, routing security, data security, and ML security, based on the previous attack
classiications.

4.1 Security Technologies for UAV Swarm Networks

In this part, we introduce technologies that can be used to ensure the security of UAV swarm networks, including
cryptography, PLS technology, ML, BC, and Intrusion Detection Systems (IDS).

4.1.1 Cryptography. It plays a crucial role in ensuring data and identity security in UAV swarms by ofering
algorithms and protocols for conidentiality, integrity, authentication, and digital signatures [94]. There are
three main types of encryption schemes, i.e., symmetric encryption, asymmetric encryption and hash functions.
Symmetric encryption, which uses the same key for both encryption and decryption, ensures data conidentiality
and integrity but faces challenges in key sharing. Asymmetric encryption, utilizing separate public and private
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keys, excels in identity authentication but is computationally complex and slow. Finally, hash functions are vital
for data integrity checks and password storage, generating a unique and irreversible hash from input data.

4.1.2 Physical Layer Technologies. In the last decade, traditional cryptography-based security methods are
efective but face challenges in key management and maintenance in complex networks like UAV swarm networks
[95]. To address these issues, PLS technology has become a popular complement in enhancing UAV swarm
network security [96]. PLS technologies focus on developing transmission schemes that exploit wireless channel
characteristics, such as noise and interference, to widen the performance gap between legitimate receivers and
attackers, thereby improving security [95].

Physical Unclonable Function (PUF): It leverages the inherent inconsistencies and randomness that arise
during the hardware manufacturing process, making each piece of hardware unique [97]. Consequently, even
with identical inputs, diferent devices produce unique outputs. This characteristic makes PUFs valuable for
identity veriication and cryptographic key generation [97].
Secure channel coding: Error control codes play a crucial role in establishing reliable and secure systems,

especially when attackers face more channel degradation than legitimate users. Therefore, researchers focus on
developing and designing channel coding techniques [95].
Artiicial Noise (AN): UAV swarm networks can transmit information by emitting AN signals to interfere

with eavesdroppers and reduce their channel quality. Even if the eavesdropper’s location is unknown, this method
can efectively mitigate eavesdropping attacks [98].

Beamforming: It can be essentially regarded as a spatial iltering operation, which utilizes the antenna array at
the transmitter or receiver to capture or radiate energy in a speciic direction [99]. The various antenna elements
in the array can be weighted accordingly to signal enhancement in a speciic direction with signal attenuation in
other directions. UAVs with multiple antennas can use beamforming technology to focus the signal in a speciic
direction to improve communication security and reduce interference [100]. Intelligent Relecting Surface

(IRS) is a typical application of beamforming. In addition, the signal strength of a single UAV is limited, and
thus Collaborative Beamforming (CB) technology can be used to improve signal quality [101]. However,
beamforming requires knowing the Channel State Information (CSI) of the receiving UAV to optimize the
antenna transmission mode, but the CSI of an UAV in light is unstable and requires a lot of energy to calculate
[100].

4.1.3 ML. ML models, categorized into various types based on feedback received during training, are essential
in enhancing UAV swarm networks security. Supervised learning models, which rely on labeled data, are adept at
predicting outputs for new and unlabeled data. Unsupervised learning uncovers hidden patterns in data without
labels, while semi-supervised learning utilizes both labeled and unlabeled data. Reinforcement Learning (RL),
involves an agent learning to maximize rewards through environment interaction [102].
In the context of UAV swarm networks, these ML methods are invaluable. For example, supervised learning

can detect unauthorized UAV activities using historical data. RL can be used to plan UAV light paths or modulate
transmission power. These various types of ML algorithms provide a range of tools to enhance the security of
UAV swarm networks.

4.1.4 BC. It combines cryptography, mathematics, and networking technologies to create a decentralized ledger
vital for data management [103]. It comprises blocks connected by cryptographic hashes, each containing transac-
tion data, timestamps, and hash values. Key characteristics of blockchain include decentralization, immutability,
and transparency. Decentralization ensures that no single entity controls the blockchain in a UAV swarm network.
Immutability, provided by hash values, safeguards data and identity information from tampering. Transparency
allows for the visibility of transactions, enabling the detection and tracing of false information in the UAV swarm
network.
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4.1.5 IDS. It is a security mechanism used to identify malicious behaviors [13]. It monitors the operation of
UAV swarm networks according to certain security detection policies, to ensure conidentiality, integrity, and
availability of the system. From a functional perspective, IDS detection methods can be categorized into three
types. The irst type is anomaly-based detection, which diferentiates between normal and abnormal behaviors
through statistical behavior modeling. This is crucial in UAV swarm networks as it promptly identiies UAVs that
deviate from expected light patterns. The second type is signature or rule-based detection, leveraging known
attack patterns for detection. The third type is speciication-based detection, which establishes a set of standards
and constraints that deine the correct operation of protocols [104].

4.1.6 Security Techniques for UAV Swarm Networks ML. Since ML technologies have many security and privacy
vulnerabilities, it is possible to enhance its security and privacy by BC and cryptography techniques, as well as
encryption and Diferential Privacy (DP) techniques.
Encryption can be primarily categorized intoHomomorphic Encryption (HE) and Secure Multi-party

Computation (SMC). HE allows computations on encrypted data without decryption, protecting against
parameter tampering and safeguarding training data. SMC enables collaborative computation among multiple
entities without exposing individual data, allowing ML models to evolve without accessing base training data
[105]. However, HE and SMC introduce extra computational and communication demands.
DP provides robust privacy by adding noise to sensitive data, ensuring consistent query results regardless of

speciic data points [105]. This makes deducing data challenging for adversaries, thus securing the privacy of
parameters and training data in ML models used in UAV swarms. However, the accuracy of ML models may be
compromised due to the noise introduced by DP [106].

4.2 Communication Security Countermeasures for UAV Swarm Networks

The primary communication threats within UAV swarm networks are network eavesdropping and interference
attacks. In the following, we focus on security strategies against these two threats. Furthermore, technologies,
approaches, optimization targets, and limitations employed by diferent security countermeasures are summarized
in Table 2.

Security Countermeasures for Eavesdropping. In order to address eavesdropping attacks during UAV-assisted
communication, authors in [101] and [107] explore the use of UAV-supported virtual antenna arrays and CB
technology. In [101], authors optimize the UAV’s hovering position, propulsion current weighting, and communi-
cation scheduling with remote ground users to mitigate the impact of eavesdroppers while minimizing propulsion
energy consumption. Sun et al. optimize the UAV’s position, energy consumption, excitation current weighting,
and the selection of BSs [107]. However, these articles consider that some eavesdroppers can be detected, whereas
in reality, eavesdroppers are often unknown.

AN can be also applied to prevent eavesdropping attacks. Zhang et al. propose a method where UAV jammers
transmit AN signals to eavesdroppers, while UAV transmitters send conidential information to legitimate users
[108]. They employ multi-agent deep RL to optimize UAV trajectory, transmission power, and jamming power.
However, UAVs are energy-constrained devices, and the long-term emission noise may afect the operation
of the entire UAV swarm. Recognizing this limitation, authors in [109, 110] consider applying collaborative
UAVs within a swarm to confuse malicious eavesdroppers, by transmitting interference signals while employing
wireless Energy Harvesting (EH) techniques to assist communications. Authors in [109] determine the optimal
heights of UAV relays and UAV jammers to maximize secrecy performance and extrapolates the probability of
the eavesdropper being detected. Authors in [110] optimize both the EH time and the number of UAVs in the
swarm to achieve a speciic level of secrecy protection and derive the probability of covert message interruption.

ACM Comput. Surv.



16 • X. Wang et al.

Table 2. Countermeasures for communication security in UAV swarm networks.

Attacks Ref. Technologies Purposes Defects
E
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es
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[101] CB
Minimizing energy consumption and
eavesdropper impacts by an improved
multi-objective dragonly algorithm.

The assumption that
some eavesdroppers
can be detected.

[107] CB Maximizing secrecy rates by an improved
multi-objective salp swarm algorithm.

The assumption that
some eavesdroppers
can be detected.

[108]
AN, CB,
Deep RL

Optimizing UAV trajectory and transmit
power for system secrecy rate

maximization.

Without the consideration
of energy consumption.

[109] AN, EH A communication protocol with dual
phases for UAV eavesdropper detection.

Without the consideration
of communication interfe-
rence when detecting.

[110] AN, EH
A three-phase UAV swarm protocol for
secure signal relay and concurrent

eavesdropper jamming.

Without the consideration
of trajectory optimization.

[111]
Channel
coding, RL

Optimizing grid coding for enhancing
anti-eavesdropping performance.

Without the consideration
of energy consumption.

[112]
Channel

coding, DL

Enhancing secure data transmission by
lowering bit error rates and security gaps

for UAVs in 5G and beyond.

The assumption that

receiver’s CSI is known.

[113]
IRS, Beam-
forming

Joint optimization of UAV transmit
power and beamforming for average

secrecy rate maximization.

The assumption that all CSI

is known.

Ja
m
m
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g
at
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s

[114] CB
Non-convex optimization in UAV
hovering altitudes and satellite
beamforming against jamming.

The assumption of perfect

CSI of all links.

[115]
Multi-agent

RL

Optimizing UAV relay selection and
transmit power allocation for improved

anti-jamming performance.

The assumption of
a line-of-sight link bet-
ween the jammer and

the UAV swarm.

[116] RL Defense against intelligent jamming in
UAV networks.

Performance degradation
caused by discretization

of training data.

[117]
IRS, Beam-
forming

Optimizing beamforming for interference
immunity, independent of known or

unknown interferer CSI.

Without the consideration
of the IRS phase shift
and amplitude rele-
ction correlation.

However, Tran el al. assume that all CSI is known [109], and Dang-Ngoc et al. consider ixed eavesdroppers,
which is not realistic [110].

Channel coding is also used to prevent eavesdropping attacks. An RL-based random linear network coding
scheme for UAV-assisted cellular systems is proposed in [111] to address eavesdropping issues. The computational
complexity of RL is typically high, yet the authors accelerate policy exploration speeds and improve commu-
nication eiciency through a hierarchical architecture. Similar to [111], authors in [112] propose a method to
enhance wireless communication security among UAVs by providing an additive Gaussian white noise channel,
even in the presence of eavesdroppers. However, the assumption that the transmitter is aware of the receiver’s
CSI may not be realistic in dynamic UAV scenarios.
Furthermore, authors in [113] use IRSs to reconigure the propagation environment, with the purpose of

mitigating the presence of eavesdroppers. The authors jointly optimize the transmit power, active beamforming,
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and passive beamforming for the 3D trajectory of UAVs. However, it should be noted that the approach presented
in [113] may lack generalizability to other scenarios.
Security Countermeasures for Jamming. Addressing intentional or unintentional interference in satellite and

UAV communications, authors in [114] introduce a two-level anti-jamming scheme. In the irst stage, low-altitude
satellites in low Earth orbit send group instruction information to all UAV groups. In the second stage, the leading
UAV in the swarm calculates the optimal beamforming vector and height, which are then broadcasted to other
UAVs.

RL is also frequently utilized against jamming attacks. For instance, authors in [115] introduce an anti-jamming
UAV swarm communication scheme based on multi-agent RL. This scheme leverages shared communication
experiences and observations among neighboring UAVs to enhance the anti-jamming performance of group
communications. However, the above scheme assumes that the network and interference models are known,
which may not hold in practical scenarios. Although RL techniques can assist UAV swarms to counter jamming
attacks, the limited computational resources of UAVs make the algorithms challenging to converge. To address
this issue, Li et al. propose a knowledge-based RL approach to mitigate the impact of smart jammers on UAV
networks [116]. This algorithm utilizes domain knowledge to compress the agent’s exploration of the state space,
thus improving the convergence speed of the algorithm.
IRS is also used against jamming attacks. Authors in [117] investigate robust beamforming in a multi-user

anti-interference communication system based on IRS. They propose a general model for joint optimization of
BS’s active transmit beamforming and IRS’s passive relect beamforming, aiming to minimize total transmit power
while satisfying QoS requirements. The study addresses both scenarios with and without statistical interference
CSI, and also leverages efective optimization techniques to handle uncertainty and non-convexity in the process
of beamforming.
Diferent from above strategies, game theory has also been used to enhance the anti-jamming ability of

UAV swarms. Authors in [118] propose a game-theoretic approach for deploying UAV swarms to perform
reconnaissance missions in harsh interference environments. This approach allows UAVs within the swarm to
compete with each other and independently adjust their positions while avoiding jamming.

Lesson 1: Eavesdropping and jamming attacks pose critical threats to the physical layer of wireless communi-
cations. Addressing these challenges necessitates a foundational focus on the physical layer. Techniques like
beamforming can be utilized to amplify signal strength for authorized users, thereby mitigating the risks of
eavesdropping and jamming. Meanwhile, strategies such as trajectory planning and power control can assist in
alleviating physical layer attacks. However, it’s paramount to note that many contemporary research assumptions,
like knowing an attacker’s location and CSI, may not be practical in real-world scenarios.

4.3 Identity Security Countermeasures for UAV Swarm Networks

Identity attacks aim to impersonate legitimate users to gain unauthorized access. Cryptography is a good choice
based on the experience of identity security countermeasures in traditional networks. A lightweight cryptography-
based user authentication and key negotiation scheme for IoD deployments is proposed in [119]. This approach
solely employs eicient one-way cryptographic hash functions and bitwise exclusive OR for authentication,
making it particularly suitable for resource-constrained UAVs.

In addition to lightweight cryptographic authentication schemes, PUF is commonly used. For instance, Alladi
et al. present a mutual authentication protocol for Software-Deined Networking (SDN)-based UAV swarm
networks [120]. This protocol utilizes question-response pairs generated by PUF chips embedded in UAVs, to
eliminate the need for storing keys in the physical memory of UAV nodes. Each round of authentication generates
a unique session key, which aims to prevents identity attacks. Similarly, authors in [121] propose a PUF-based
authentication protocol for UAV swarm networks, to defend against MITM attacks, replay attacks, and other
identity attacks. Compared to [120], it also ofers improved computational eiciency. However, both protocols do
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not consider the interference of noise on PUF responses. Authors in [122] address this issue by using a fuzzy
extractor to reduce the noise of PUF responses and utilizing PUF responses for authentication.
Furthermore, BC has also emerged as a signiicant technology to ensure identity security in UAV swarm

networks. For example, authors in [123] propose a BC-based identity veriication protocol. It establishes session
keys between UAVs and ground stations to verify identities of UAVs and ensure secure communications. However,
the protocol does not account for scenarios where certain nodes may not receive keys due to the unreliable
nature of wireless channels. In contrast, authors in [124] address this limitation by proposing a BC-based mutual
recovery group key distribution scheme. Furthermore, Tan et al. argue that managing keys through ground
stations can become a target for attacks or increase the communication overhead for UAVs [83]. To overcome
these challenges, they propose a BC-based distributed key management scheme for heterogeneous FANETs. In
this scheme, the UAV swarm is divided into diferent groups, each comprising a powerful leader UAV and regular
UAVs, allowing each group to manage its own keys. Additionally, each UAV possesses its own “transaction chainž
to ensure the authenticity of its identity.
The aforementioned BC-based identity veriication scheme is mainly implemented within the same region.

However, when UAV swarms engage in cooperative tasks across diferent regions, the authentication of UAVs
becomes challenging. To address this, authors in [125] propose a BC-based cross-domain authentication scheme,
which uses multiple signatures based on threshold sharing to create identity federations for collaborating regions.
The scheme utilizes smart contracts for authentication to enable reliable communications among cross-domain
devices. However, it introduces additional latency. Diferent from this, authors in [126] consider both the problem
of cross-domain authentication for UAVs and the reduction of authentication latency. Their proposed UAV security
authentication scheme employs UAV controller in each region, which is responsible for authenticating and saving
UAV identities within the region. When a UAV needs to migrate to another region, it only requires the UAV
controller to check the BC information.
Additionally, researchers often discuss R2L and U2R attacks together in the context of network security. For

example, authors in [71] and [127] discuss the utilization of ML-based IDSs to mitigate R2L and U2R attacks. In
[71], a two-layer dimensionality reduction module and a two-layer detection module are used to detect R2L and
U2R attacks. Diferent from [71], authors in [127] propose a layered random forest attack detection algorithm
based on random search cross validation. Due to resource constraints, they also employ a feature selection
algorithm based on the Pearson correlation coeicient to reduce the computational complexity of the model.

Besides the measures mentioned above that simultaneously prevent various types of identity attacks, speciic
security countermeasures have been proposed to target certain attacks. For example, authors in [128] propose
an intelligent Sybil attack detection method for the FANET-based IoT. This method exploits the physical layer
properties of radio signals emitted by UAVs and utilizes ML to classify the signals. Authors in [129] use the time
series of Received Signal Strength Indicator (RSSI) as a feature to detect the mutation points in the RSSI time
series using Bernaola Galván segmentation algorithm to identify the power control behaviour of illegal nodes.
But its efectiveness is limited to speciic attack types.

Lesson 2: Clearly, these countermeasures either aim to ensure that identity information is immutable (such as
security strategies based on PUFs and BC) or consider to analysis the identity and behavior information of UAVs
(such as security strategies based on ML and IDS). In addition, it is crucial to consider that resource-constrained
UAV swarm networks require lightweight authentication protocols and detection schemes.

4.4 Network Resource Security Countermeasures for UAV Swarm Networks

The purpose of network resource attacks is to exploit various resources, such as network bandwidth resources
and UAV computational resources, to steal data and gain control over UAV swarm networks. In the following, we
review security measures for network resources in UAV swarm networks and provide a summary in Table 3.
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Security Countermeasures for DoS/DDoS. The goal of DoS and DDoS is to lood a network with a large volume of
malicious data packets, depleting network resources and disrupting network services. Therefore, most mitigation
strategies for DoS and DDoS attacks focus on detecting and mitigating abnormal network traic.
For DoS attacks, Zhang et al. propose an efective approach to design state feedback controllers against

DoS attacks [130]. The approach involves introducing a logic processor embedded in the controller to capture
information on the duration time of each DoS attack. By modeling the closed-loop system as an aperiodic sampled-
data control system dependent on the maximum and minimum duration time of DoS attacks, resilient controllers
can be designed using linear matrix inequalities with tuning parameters. Similarly, a software framework to
provide DoS-resilient control for real-time UAS is proposed in [131]. They defend against DoS attacks primarily
targeting at the CPU, memory, and communication channels by constraining resource usage.

For DDoS attacks, Safavat et al. propose a ML-based approach to enhance security of UAV networks controlled
by an SDN controller [132]. Their method utilizes principal component analysis and linear discriminant analysis
techniques to identify features associated with DDoS attacks. Subsequently, they employ a feedforward neural net-
work classiier to classify normal and abnormal network traic data from UAVs. Similarly, an ML-based approach
for defending against DDoS attacks is proposed in [133]. The method uses synthetic minority oversampling
technique to make a distinction between normal and abnormal data.

In addition to ML algorithms, researchers often employ IDS techniques to detect DDoS attacks. For instance, a
hybrid approach based on spectral traic analysis is proposed in [134]. The method utilizes wavelet-based data
spectrum multifractal analysis to diferentiate normal and abnormal traic. Unlike ML or IDS-based research,
Mairaj et al. discuss the use of game theory to prevent DDoS attacks on UAVs [135]. They propose ive non-
cooperative game scenarios for two DDoS attack variants and introduce the quantum response equilibrium
concept to account for participants’ mistakes and evolving behavioral patterns. Both Nash equilibria and quantum
response equilibrium information are utilized to provide UAV operators with enhanced insights.

Security Countermeasures for Malware. Malware aims to disrupt availability, integrity, and functionality of
software within UAV networks. Software behavior-based anomaly detection is a common approach to Malware
attacks in UAV swarm networks. Authors in [136] use the timing information of subcomponents during software
operations as features for detecting anomalies. They introduce anomaly detection techniques based on ranges,
multidimensional euclidean distances, and single-class support vector machine classiication.

Carreon et al. propose a statistical-based method for Malware detection [137]. The authors utilize the cumulative
distribution function of timing data to capture the system behavior of applications. They also employ a probabilistic
estimation approach to determine the presence of malware in individual operations and operation sequences
within the software execution paths, while establishing the detection thresholds.

Authors in [138] point out that existing UAV malware detection techniques primarily analyze the malicious
behavior occurring during communications between malware and control servers. However, these methods may
not efectively detect advanced persistent threats that employ low-traic attack patterns. To address this, the
authors propose an Internet UAV malware detection method based on domain name system traic. This method
employs ML techniques to detect malware traic, while also utilizing Fourier transform-based detection methods
to identify domains associated with malware. In contrst, authors in [139] introduce a robust DL detection method
based on device opcode sequences. The authors utilize a deep feature space to efectively diferentiate between
malicious and benign applications.

Security Countermeasures for Hijack. Hijacking attacks aim to compromise hardware resources within UAV
swarm networks. Authors in [140] propose a method for detecting hijacked UAVs in UAV networks by corrobo-
rating event information from diferent sources. The method utilizes secure asymmetric encryption along with a
pre-shared list of oicial UAVs to ensure authenticity and integrity of UAVs. Additionally, a trust policy inspired
by BC principles is employed to identify infected UAVs.
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Table 3. Summary of security countermeasures for network resources.

Attacks Ref. Technologies Description

DoS

[130] Logic processor Designing resilient controllers to ensure system stability.

[131] Container DoS attack resilience for real-time UAV systems.

DDoS

[132] ML
Balancing load and detecting DDoS attacks in SDN-based

environments for maximum throughput and security.

[133] DL Detecting and identifying DDoS attacks to enhance
network security.

[134] IDS Detecting and analyzing various types of DDoS attacks.

[135] Game theoretic Mitigating DDoS attacks by dynamic and static
models for attackers and UAVs.

Malware

[136] Timing anomaly
detection

Data-driven anomaly detection based on temporal
features in embedded systems.

[137] Anomaly
detection

Detecting malware in embedded systems by analyzing
timing data with an optimization approach.

[138]
String matching,
Fourier transform

Detecting malware to discover temporal correlations among
domain name system requests from monitored devices.

[139]
DL

Enhancing identiication accuracy and resilience against
junk code attacks in military IoT devices.

Hijack

[140] Cryptography,
Trust strategy

Detecting compromised UAVs by information
veriication and secure encryption methods.

[141] Anomaly
detection

Detecting non-random behavior in robot swarms and
isolating compromised robots.

Conversely, authors in [141] explore the detection of non-random behavior based on signs. They propose a
runtime monitoring framework that utilizes the signed residual, which is the diference between expected and
received information, for identifying and isolating unexpected non-random patterns in multirobot systems. They
also introduce a technique called the cumulative sign detector that tracks luctuations in the signed values of the
residual, aiming to detect inconsistencies and initiate alarms upon detecting potential attacks.

Lesson 3: ML or IDSs are commonly employed to mitigate DoS or DDoS attacks within UAV swarm networks.
For malware attacks, researchers typically focus on either detecting anomalies in software execution or monitoring
data transmitted by the software. In the case of hijacking attacks, the primary focus lies in analyzing the behavior
of UAVs or establishing a reputation mechanism to ascertain the normalcy of UAVs. However, almost all the
research focus on accuracy, without considering the relationship between algorithm complexity and energy
consumption.

4.5 Routing Security Countermeasures for UAV Swarm Networks

In UAV swarm networks, attackers conducting network routing attacks redirect data traic to nodes under their
control, aiming to steal sensitive information, disrupt network services, or engage in other malicious activities.
Implementing secure routing measures is crucial to ensure the safety of UAV swarm networks. Therefore, we
introduce mitigation measures for routing attacks in UAV swarm networks, and provide a brief summary of
methods and approaches in Table 4.

Security Countermeasures for Wormhole. To counteract wormhole attacks, Teng et al. propose a detection
algorithm integrated with the node trust optimization model [142]. The algorithm irst adds nodes in the network
with the number of neighbors exceeding the threshold to the suspicious list. If the route between the suspicious
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node and the neighbor node exceeds the wormhole threshold, then the path is marked as a test path and the trust
level of the node is evaluated.
Similar to [142], authors in [143] propose an SDN-based wormhole analysis approach by using the neighbor

similarity as a new wormhole countermeasure in software-deinedMobile Ad Hoc Networks (MANETs). It
uses an improved K-means algorithm to analyze the similarity index of adjacent nodes on a centralized SDN
controller, and marks nodes that exceed the threshold. If the number of nodes’ neighbors is much more than that
before, it can be determined as a wormhole node. In addition, the algorithm does not require speciic location
information to detect wormholes.

Security Countermeasures for Black Hole. To counter black hole attacks, authors in [144] propose a BC based
mechanism for UAVs, integrating a BC broadcast module with the routing protocol for low conirmation latency
and high scalability. This mechanism employs BC consensus for behavior validation and a time-to-live forwarding
rule against black hole attacks. Another study introduces a dynamic threshold-based protocol [145] to mitigate
these attacks, calculating standard deviations of sequence numbers from response packets to identify malicious
nodes using sequence number thresholds and hop counts. However, this approach increases routing overhead.
In contrast to the passive defense mentioned above, authors in [146, 147] adopt active defense approaches.

Authors in [146] utilize data control packets to inspect nodes on the selected paths and utilize an extended data
routing information table to detect and eliminate malicious nodes. Authors in [147] employ active detection
techniques to identify and avoid suspicious nodes. They utilize multiple detection paths to detect anomalies in
the network and ensure reliable data transmission.

Table 4. Summary of security countermeasures for routing.

Attacks Ref. Technologies Description

Worm-
hole

[142] Anomaly
detection

Detecting wormhole attacks in wireless sensor networks to conserve
network energy.

[143] Anomaly
detection

Detecting and countering wormhole attacks without location
information in MANETs.

Black
hole

[144] BC
Trusted self-organizing in UAV swarms, focusing on secure data

transmission and decision making.

[145] Anomaly
detection

Detecting and preventing black hole attacks in MANETs to improve
network security.

[146] Anomaly
detection

Enhancing the detection and elimination of cooperative black hole
attacks based on an extended data routing information table.

[147] Anomaly
detection

Secure routing in wireless sensor networks to enhance data
transmission success.

Gray
hole

[148] IDS Detecting and defending against gray hole attacks by G-IDS nodes.

[149] Reputation
system

Increasing packet delivery success and overall network performance
by identifying and avoiding malicious nodes.

Security Countermeasures for Gray Hole. As mentioned earlier, gray hole attacks are challenging to trace, since
the data packets are selectively discarded during the attack. Therefore, more complex and sophisticated strategies
are required to detect and prevent such attacks in UAV swarm networks.
Authors in [148] deploy special Gray hole Intrusion Detection System (G-IDS) nodes in the network to

monitor neighboring nodes’ transmission. When a G-IDS node detects signiicant data packet loss beyond a
threshold, it broadcasts an alert with the identity and addresses of the gray hole node to isolate it. A drawback is
that G-IDS nodes can only detect their immediate neighbors.

Authors in [149] discuss the use of reputation-basedmechanisms to secureMANETs by identifying and avoiding
malicious nodes. The authors explore the efect of reputation on the throughput of a MANET by simulating four
diferent scenarios. They further note that applying reputation to complete routing, rather than just neighboring
nodes, results in successful packet transmission in adversarial networks.
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Lesson 4: To ensure routing security in UAV swarm networks, extensive research has been conducted on
reputation-based IDSs, BC techniques, and detection mechanisms. These methods aim to identify malicious nodes
or routes and protect the integrity of routing within the system. However, these methods often overlook resource
consumption within the network, which can be an important consideration for the overall system performance
improvement.

4.6 Data Security Countermeasures for UAV Swarm Networks

In this section, we review the security strategies adopted by UAV swarms to mitigate data tampering attacks
and FDIAs. We also summarize the countermeasures against data tampering attacks in Table 5 and provide a
comprehensive summary of strategies against FDIAs in Table 6.

Security Countermeasures for Tampering. For data tampering attacks, researchers primarily leverage BC as a
mitigation strategy. For example, Aggarwal et al. design a system that utilizes a public BC distributed network
based on Ethereum for secure data transmission and collection [150]. BC stores the data collected by UAVs and
updates the information to a distributed ledger, ensuring the security of both data and identities simultaneously.
Similarly, Singh et al. also protect data dissemination by creating tamper-proof and transparent transaction
records using BC [151].

However, these methods overlook the trustworthiness of miner nodes in the UAV swarm network. In contrast,
authors in [152, 153] consider both secure data sharing using BC in the UAV swarm network and the honesty
of nodes among network miners. Authors in [152] introduce credit as a metric for selecting miner nodes and
evaluate miners using a highly accurate quadruple subjective logic model. The highest-credited node is chosen as
the miner, and credits are recorded in a decentralized and tamper-proof manner to achieve secure data sharing.
In contrast, authors in [153] propose a BC-based crowdsourcing framework with a reputation-based incentive
mechanism to address the selishness issue of untrusted UAVs. It aids task publishers in choosing UAVs with
strong reputations, while the BC-based data transmission scheme ensures secure data sharing.

Table 5. Summary of security countermeasures for tampering atacks.

Ref. Description
Consensus
mechanisms

Reliable
nodes

Lightweight

framework

[150]
A BC-based scheme is proposed for enabling

secure data dissemination.
Proof of stake × ×

[151]
A BC-based security framework to ensure

secure transmission of information.
Proof of work × ×

[152]
A permission-based BC for data sharing in

UAV networks.
Practical byzantine
fault tolerance

√
×

[153]
A BC-based collaborative framework for

securing data sharing between UAVs and task
publishers.

Proof of work
√

×

[154]
A scheme for secure data sharing in

UAV-assisted disaster relief.
Byzantine fault

tolerant
√ √

[155]
A credit-based consensus algorithm to

securely track UAV and vehicle misbehavior.
Delegated proof of

stake
√ √

(ł
√
ž if the solution satisfies the property, ł×ž if not.)

However, the aforementioned studies may overlook the issue of resource limitations. Authors in [154, 155] focus
on data security and node honesty, while also considering energy-constrained scenarios. In Wang et al.’s research,
they propose a lightweight BC framework that integrates reputation-based consensus protocols and an of-chain
mechanism based on vehicular fog computing [154]. The lightweight implementation allows resource-constrained
devices to store only block headers, while resource-intensive tasks are oloaded to ground vehicles. Additionally,
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the authors utilize RL-based algorithms to optimize payment and compute resource-sharing strategies during
oloading to ensure secure data transmission. Similarly, a lightweight BC-based framework for secure data
sharing is proposed in [155]. Authors develop a credit-based delegated proof of stake algorithm to enhance
consensus eiciency. Similar to [154], the lightweight implementation allows resource-constrained devices to
store only block headers, and RL techniques are applied to provide optimal strategies during the data sharing
process.

Table 6. Summary of countermeasures for FDIA.

Ref. Technologies Description Defects

[156] ML
Detecting FDIAs in drone-collected images to

enhance data security of UAVs.
The data type is
too monolithic.

[157]
Anomaly
detection

Detecting FDIAs in the cyber-physical
system.

No compensation is made
to the system.

[158]
Anomaly
detection

Detecting FDIAs and interferences in UAS,
ensuring UAV control safety.

The noise of the environment
is not considered.

[159]
Anomaly

detection, ML
Real-time detection and estimation for FDIAs

in network control systems with noise.
Excessive computational

complexity.

[160]
Anomaly
detection

A distributed tracking algorithm to detect and
identify GPS spooing attacks.

Not suitable for places
with few GPS devices.

[161] DL
UAV GPS spooing detection through analysis

of path loss statistics.
Without the consideration of

resource consumption.

Security Countermeasures for FDIAs. As mentioned earlier, apart from data tampering attacks, FDIAs is another
signiicant data security threat in UAV swarm networks. To counter FDIAs, several mitigation strategies have
been proposed.

For instance, authors in [156] present a DL-based technique to detect FDIAs in images acquired by UAVs. Images
are initially preprocessed and then classiied by a convolutional neural network. Nearest neighbor interpolation
is employed to adjust the image size, followed by normalization using the min-max method. Subsequently, the
Mahalanobis distance is utilized to assess the presence of FDIAs. However, their focus is primarily on FDIAs
for images, neglecting system-speciic FIDAs considerations. In contrast, authors in [157] present a specialized
FDIAs detector designed to address environmental white noise. This detector collects current and historical
information to reveal potential threats. Additionally, the false positive rate can be adjusted by selecting an
appropriate threshold.

Unlike the work in [157], authors in [158] consider system compensation in addition to FDIAs detection. They
introduce a multi-feature fusion-based attack detection mechanism, which utilizes average received signal power
and estimation errors of injected virtual system veriication signals to identify attacks. However, the above
studies only focus on detecting FDIAs in a noisy environment or compensating for the attacked system, without
considering the both at the same time. Sargolzaei et al. study FDIAs in a noisy environment and compensate for
the attacked system [159]. They design a real-time FDIAs monitoring scheme that employs a linear Kalman ilter
in conjunction with a three-layer feedforward neural network observer.
GPS spooing is an attack on positioning systems that can lead to uncontrolled behavior in UAV swarms not

equipped with encrypted GPS systems. Researchers have proposed two main categories of countermeasures
against GPS spooing: passive defense and active detection [162]. Passive defense methods primarily involve
encrypted GPS signals. However, encrypted GPS signals either necessitates the update of the existing GPS
infrastructure or the modiication of the GPS signal structure. Therefore, defense methods involving GPS signal
encryption are typically employed in military activities and are not suitable for civilian UAVs [162]. In contrast,
active detection of GPS spooing is the main method in UAV swarm networks.
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Active detection methods can utilize surrounding devices that provide GPS signals to detect and defend against
GPS spooing attacks. For example, in [160], authors utilize distributed radar ground stations equipped with local
trackers to detect GPS spooing attacks on UAVs. In addition to utilizing surrounding devices, ML algorithms can
also be employed. Diferent from [160], an ML-based method is proposed in [161] to detect GPS spooing attacks
even with a single base station. The authors analyze the statistical features of path loss between UAVs and BSs to
determine if UAVs are under GPS spooing. They deploy six types of DL models on edge computing servers to
integrate the results of multilayer perceptrons.
Lesson 5: From the above review of data security measures for UAV swarm networks, the main focus is to

utilize the characteristics of BC to prevent data tampering attacks. As for FDIAs mitigation strategies, most
researchers focus on utilizing ML or IDSs to design detection mechanisms based on data authentication. However,
BC-based security measures have limited considerations for lightweight implementations. Similarly, ML or IDS
detection mechanisms also need to take account of energy consumption caused by high computational complexity.

4.7 Security and Privacy Protection Countermeasures for Machine Learning in UAV Swarm Networks

As previously mentioned, ML is not inherently secure. Therefore, trustworthy ML countermeasures are essential
to maintain security and reliability of UAV swarm networks. In the following, we review security and privacy
protection strategies for ML in UAV swarm networks and summarize them in Table 7.

Security Countermeasures for ML Models. For UAV swarms, if the underlying ML models are compromised
without detection, this may result in the loss of UAV control.

One common method to compromise ML models is through adversarial attacks, often executed by adding
perturbations along the largest gradient. Common mitigation strategies against these attacks include adversarial
training, although this approach is computationally intensive. To conserve computational resources, authors in
[163] investigate the causal relationships among samples, outputs, and actual labels under adversarial conditions
as a means to mitigate these attacks. Notably, this method also provides portability.
Compared to ML, FL is more commonly applied in UAV swarm networks, leading to an increased focus on

security solutions of FL models. For the model-safe aggregation problem in FL, an SMC based global model
aggregation method is introduced in [164], to ensure the absence of malicious local models during the aggregation
process. The method sends a query to all users during the aggregation process and generates a response in each
iteration to verify whether the user has malicious purposes.
Wang et al. construct multiple explainable models and backdoor classiiers on the server, randomly sent to

the agent during training. This prevents the agent from sending malicious parameters to the server [165]. For
suspicious backdoor data, the authors use a blur-label-lipping strategy to clean them and restore data availability.

Nguyen et al. use noise to eliminate backdoor attacks in aggregation[166]. However, noise injection based on
DP excitation degrades the performance of the aggregation model. Therefore, authors provide boundary proofs
for the injected noise and use model clustering and weight pruning methods to select the submission parameters
to mitigate the efect of noise.
In addition to the methods mentioned above, there is also the approach using statistics and weight shares to

achieve secure aggregation of models. Authors in [167] propose a mitigation method based on zero-knowledge
clustering. During the aggregation iteration, if a node is identiied as malicious and difers from normal nodes in
statistical characteristics, its weight is reduced.
Furthermore, authors in [170, 171] use BC to ensure the security of participants, thereby safeguarding the

security of FL aggregation. BC is employed to verify the legitimacy of participants in FL model aggregation
[170, 171]. In contrast, in [172], BC is utilized to ensure the security of local data, thereby protecting the security
of aggregated parameters.
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Table 7. Summary of countermeasures for ML security.

Attacks Ref. Technologies Description

Adversarial [163]
Causal
Theory

A gradient-based approach to maintain detection
model accuracy.

Back door

[165] ML A federated ilter-based algorithm to protect
applications from malicious data.

[166]
Anomaly
detection

A defense framework to detect and remove
high-impact anomalous models.

Model aggregation [167] ML A zero-knowledge clustering algorithm to enhance
the robustness of FL systems.

Membership inference [168] SMC
A FL framework for private and accurate data

sharing in edge computing scenarios.

FL model privacy [169] AN
A UAV-assisted covert FL algorithm to reduce conver-

gence time and energy consumption of devices.

Poisoning,
Membership inference

[170]
BC, SMC,

HE
A BC-based FL algorithm for UAVs to enhance

data privacy.

Model aggregation
and FL model privacy

[164] SMC A FL scheme for defense against poisoning attacks.

[171] DP, BC
An algorithm to achieve trustworthy

privacy-preserving ML.

[172] ML, DP
An intrusion detection algorithm for UAV networks,
addressing data imbalance and privacy challenges.

Privacy Protection Countermeasures for ML Models. There are also privacy attacks directed towards ML models.
If the underlying ML privacy is compromised, it can potentially lead to the leakage of conidential information
within the network.

Regarding the privacy issue of the FL training process, Li et al. propose an FL framework based on SMC
techniques to protect data privacy during model sharing [168]. Participants are organized into a chain-like
structure. Each participant in a chain generates output by adding masking information to their gradient. The
output of a parent participant is used as masking information by its descendant participants to protect the
gradient. The inal participant sends its output as the aggregated gradient of all participants in the chain back to
the server. This way, adversaries cannot extract privacy-sensitive information from the participants’ outputs.

For the problem of parameter eavesdropping during the FL model aggregation process, authors in [169] present
a solution in which UAVs not only participate in training during the FL aggregation process but also emit AN
interference against eavesdroppers. It is worth noting that if the privacy problems faced by FL models during
aggregation are related to the physical layer, the security measures adopted in UAV swarm communications can
be used as references.
Furthermore, to prevent parameter inference during the aggregation of FL models, authors in [171, 172] use

DP to ensure the privacy of participants when uploading their local parameters. In contrast, authors in [164, 170]
use SMC to aggregate the models without revealing any information about the parameters of the aggregated
model. They also use masking to protect the privacy of local models.

Lesson 6: BC, HE, DP, and SMC are commonly used techniques to mitigate security and privacy attacks for ML
in UAV swarm networks. However, existing mitigation measures often target speciic security or privacy attacks
within ML, and do not fully consider the possibility of the coexistence of multiple attacks. Furthermore, they do
not take into account the resource constraints and the diversity of scenarios related to UAV swarm networks.
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5 Research Challenges and Open Issues

Because the applications of UAV swarms continue to expand, the security concerns in this ield have gained
signiicant attention. While numerous security countermeasures are available currently, several challenges and
open issues still need to be addressed, which are discussed below.

5.1 Resource Constraints in UAV Swarm Networks

The security of UAV swarm networks is diicult to guarantee, since limited network resources pose a major
challenge to the design of efective security measures. Solutions based on BC, cryptography, and ML require
signiicant energy support, which may be impractical for resource-constrained UAVs. Therefore, there is an
urgent need for lightweight algorithms that can balance security and resource consumption.
In addition to studying lightweight algorithms to save the energy of UAV swarm networks, there are other

methods to mitigate the problem of energy constraints in UAV swarm networks, such as wireless charging. It
can ensure that UAVs have suicient power to perform tasks. Previous studies [109] and [110] both mention the
application of wireless charging technology in UAVs. However, dedicated research on wireless charging for UAV
swarms is still relatively limited. Future research should further explore the potential of these technologies in
UAV swarms.

5.2 The Joint Sotware and Hardware Design for Secure UAV Swarm Networks

In the Cybersecurity of UAV swarm networks, most researchers focus on studying security algorithms imple-
mented at the software level, such as encryption, authentication, and authorization. However, software and
hardware are interdependent. In addition to considering secure algorithms, how to ensure the security of UAV
swarm networks from a perspective of software-hardware integration is essential. SDN technology is a typical
example that encompasses both software and hardware. The software control plane of SDN achieves centralized
control and management of the network, while the hardware of SDN provides data processing and forwarding
capabilities. Through the integration of software and hardware, SDN efectively accomplishes functions such as
centralized control, dynamic coniguration, and programmability.
Integrating SDN into UAV swarm networks can provide security for the data within the network. This is

because all data is routed through a central controller, allowing centralized analysis to identify and ilter out
anomalous data. Furthermore, SDN can facilitate network slicing in UAV swarm networks, isolating external
access. While SDN ofers advantages in network management and data forwarding, it also exposes potential
security vulnerabilities, such as DDoS and replay attacks. Additionally, SDN controller in UAV swarm networks
is susceptible to single points of failure. Lastly, the high mobility of UAVs may pose connectivity challenges with
SDN controllers. Therefore, integrating SDN into UAV swarm networks presents several challenges.

5.3 3D Placement of UAV Swarm Networks

Currently, there are some studies on the 3D positioning of individual UAVs. For instance, studies like [173] and
[174] propose models that provide 3D modeling of UAV motion, efectively preventing eavesdropping attacks.
Although research on the 3D trajectories of UAVs has made some progress, such as signiicantly improving
average secrecy rates compared to 2D schemes, there is currently a lack of dedicated research focusing on 3D
trajectories for UAV swarms. One of the main reasons is that planning the 3D trajectories for UAV swarms is
more complex and dynamic than those for individual UAVs. However, appropriate planning of the 3D positions
for UAV swarms can save energy for the entire UAV swarm network and enhances the overall system security.
While the applications of UAV swarms continue to expand, the 3D trajectory planning of UAV group has become
a key problem that must be solved.
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5.4 Artificial Intelligence-based Secure Routing Protocols in UAV Swarm Networks

Traditional routing protocols can provide basic communication support for UAV swarms; however, they lack
security when facing routing attacks such as black holes and grey holes, and their performance may degrade
in adverse environments. Considering the immense potential demonstrated by Artiicial Intelligence (AI) in
other applications of UAV swarm networks, AI may ofer new solutions for secure routing. Nevertheless, the
trustworthiness of AI must be taken into account [175]. Researchers have already explored AI-based routing
protocols, such as topology prediction and adaptive learning-basedmethods, but AI-based secure routing protocols
speciically tailored for UAV swarm networks remain unexplored.
Furthermore, due to the diverse applications of UAV swarms, it is necessary to investigate secure routing

protocols suitable for diferent scenarios and attack patterns. At the same time, AI-based secure routing protocols
often require high computational and communication resources to detect and respond to network attacks in
realtime, whichmay harm the overall performance and eiciency of UAV swarms. Therefore, appropriate measures
need to be taken to make a trade-of between performance and security.

5.5 The Application of uantum Cryptography in UAV Swarm Networks

With the emergence of quantum computers, encryption-based security solutions, even those with high mathe-
matical complexity, may be vulnerable to quantum attacks [95]. With resource-constrained devices, UAV swarm
networks’ encryption schemes are even more susceptible to potential breaches. Therefore, new technologies are
needed to safeguard the security of UAV swarm networks.
Quantum cryptography presents new countermeasures for enhancing the security of UAV swarm networks.

First, quantum cryptography can utilize encryption methods based on quantum properties to ensure data security.
Second, quantum key distribution can be employed to establish secure keys, enhancing communication privacy
among UAVs and protecting data transmission within UAV swarms.

However, integrating quantum cryptography into UAV swarm networks also has signiicant challenges. First,
quantum cryptography is complex, requiring extensive technical support when incorporated into UAV swarm
networks. Second, cost may pose obstacles to the adoption of quantum-secure communication, given the typically
expensive hardware and infrastructure investments associated with this technology. Additionally, addressing the
management of quantum keys, especially in large-scale UAV swarm networks, remains a challenge. Last, UAVs
are resource-constraint devices, necessitating appropriate solutions that balance security and performance.

6 Conclusion

We conduct a comprehensive survey on security of UAV swarm networks. First, we briely introduce the three
key aspects of UAV swarm networks and outline corresponding applications. Next, we discuss and categorize
existing and potential security threats in UAV swarm networks based on their consequences. Regarding the
threats, we also discuss existing security-based techniques. Additionally, we summarize mitigation strategies
adopted by UAV swarm networks for diferent types of attacks. Finally, we explore current challenges faced by
UAV swarm networks and suggest future research directions. We believe that this survey can help researchers in
understanding and studying UAV swarm networks.
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