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The metaverse is an Artiicial Intelligence (AI)-generated virtual world, in which people can game, work, learn and

socialize. The realization of metaverse not only requires a large amount of computing resources to realize the rendering of the

virtual world, but also requires communication resources to realize real-time transmission of massive data to ensure a good

user experience. The metaverse is currently moving from iction to reality with the development of advanced technologies

represented by AI, blockchain, extended reality and Digital Twins (DT). However, due to the shortage of communication

as well as computing resources, how to realize secure and eicient data interaction between the virtual and the real is an

important issue for the metaverse. In this article, we irst discuss the characteristics and architecture of the metaverse, and

introduce its enabling technologies. To cope with the conlict between limited resources and user demands, the article next

introduces an Integrated Sensing, Communication, and Computing (SCC) technology, and describes its basic principles

and related characteristics of SCC. After that, solutions based on SCC in the metaverse scenarios are summarized and relevant

lessons are summarized. Finally, we discuss some research challenges and open issues.

CCS Concepts: ·Networks→Ad hoc networks; ·General and reference→ Surveys and overviews; ·Human-centered

computings→ Ubiquitous and mobile computing.
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1 INTRODUCTION

As a new paradigm for the next-generation Internet, the metaverse aims to create a virtual space parallel to
the real world, where people communicate through digital bodies as they do in the physical world [14]. Due
to the emergence of the metaverse, researchers have been studying it and deining its concepts. Unfortunately,
researchers are still unable to ind the exact shape of the metaverse and its boundaries [119]. Generally, the
metaverse can be regarded as a binary world, where both physical and digital virtual worlds merge. When it
comes to spatio-temporality, the metaverse is a digital world that is virtual in the spatial dimension and real in
the temporal dimension; when it comes to independence, the metaverse is a virtual world that is closely linked to
the physical world but with high independence; when it comes to authenticity, the metaverse has digital bodies
of real-world objects and digital products that are uniquely its own. Similar to the movie łTop Gunž, people enter
the virtual space through Virtual Reality (VR) devices as digital bodies, trade and create things in the virtual space.
It has an impact on the physical world through the inluence of people’s thoughts, and even changes people’s
behaviors in the physical world. To realize this dualistic world, the metaverse goes through three successive
stages from a macro perspective [35]: (i) Digital Twin (DT), (ii) digital native, and inally (iii) surrealism. The
irst stage is to generate a mirror world corresponding to the physical world, consisting of high-idelity DTs of
people and objects in the physical world. Various attributes (user activities and emotions) in the virtual world are
a high degree of simulation of physical objects. The second stage focuses on the creation of the local content in
the virtual world. People can participate in the creation of virtual worlds in the form of digital avatars, which
can inversely inluence the physical world. In the third stage, the meta-universe can form a self-sustaining and
persistent hyper-real world. The virtual world and the physical world can be seamlessly integrated. The physical
world becomes a subset of the virtual world, and the virtual world produces things that do not exist in the
physical world. The current development of metaverse is in the budding stage (i.e., DT stage), so the discussion
of metaverse in this article is mainly focused on the irst stage.

Current Internet of Things (IoT) technology is developed rapidly and our life is illed with a variety of sensors
for information collection. The development of 5G and beyond 5G networks has increased the rate of information
transfer among nodes. Artiicial Intelligence (AI) has also shown great potential for data processing and analysis.
The metaverse, as a mirror of the physical world, requires real-time mapping of information from the physical
world to the virtual world through DT technology. Correspondingly, communication networks need to have the
ability of intelligently sensing the physical world and maping the virtual world everytime and everywhere [120].
The current proliferation of wireless communication and sensing devices makes the contradiction between the
endless growth of service demands and the limited wireless resources particularly prominent, and the current
wireless network architecture and related technology cannot meet the development needs of the metaverse.

The Integrated Sensing, Communication, and Computing (SCC) network is a network with simultaneous
physical and digital space sensing, ubiquitous intelligent communication and computing capabilities. Collabora-
tive sharing of resources can be realized through integrated communication-sensing-computing devices, thus
supporting the implementation of various applications in the metaverse. As mentioned in [31], the platform
architecture of the metaverse can be divided into the following layers (as shown in Fig. 1):

• Infrastructure: consists mainly of 6G, cloud data centers and graphics processing units;
• Human-computer interaction: mainly enabled by wearable devices, mobile devices, haptics, sound recogni-
tion systems and neural interfaces;

• Decentralization: mainly enabled by the blockchain and Edge Computing (EC);
• Spatial computing: mainly enabled by 3D engines, VR, Augmented Reality (AR) and eXtended Reality (XR);
• Experience: mainly consists of gaming, socializing, esports, shopping, events, festivals, work and study.

We can discover that the application of SCC is extensive and diverse. For example, during data processing,
SCC allows for fast channel selection and low transmission latency. In addition, SCC can assist accurate speech
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Fig. 1. The metaverse platform architecture.

recognition and other language processing to optimize human-computer interaction. It can also improve the
visual experience in the metaverse by enhancing AI’s ability through multidimensional perception and ubiquitous
communication. Overall, SCC can make people’s experience in the metaverse realistic through the fusion
technologies, multidimensional perception of various information in the physical world, ubiquitous computing
and communication capabilities.

1.1 Prior Related Surveys

With the introduction of the metaverse concept, there are many researchers who have summarized diferent
aspects of the metaverse. A technical framework for a metaverse in terms of infrastructure, management, basic
public technologies, social networks, and virtual reality is presented in [69]. Authors in [35] review the relevant
technologies of the metaverse and propose a framework for the metaverse. Cheng et al. [14] review the research
progress made by major technology companies towards the metaverse and existing virtual reality platforms.
The applications of EC in the metaverse are surveyed in [120] and [115]. The former focuses on the integration
of EC with the metaverse infrastructure, while the latter concentrates on the impact of combining EC and the
blockchain in the metaverse. Authors in [31] and [119] focus on the application of AI and technical details related
to how AI and the blockchain can be integrated with the metaverse. Two articles, [138] and [106], discuss privacy
and security issues and related countermeasures in the metaverse. Authors in [106] summarize current issues
concerning authenticated access, socializing, data management, and economic aspects arising from metaverse
applications, and summarize current state-of-the-art approaches to address these issues. This article focuses
on the application of SCC technology in the metaverse. The current key technologies for implementing the
metaverse based on SCC are summarized, and the corresponding solutions are summarized according to diferent
application scenarios in the metaverse. The comparison between this article and related surveys is summarized
in Table 1.
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Table 1. Comparisons of related surveys.

Focus Ref. Contribution

General framework

[69]
• Described the technological framework of the metaverse in
terms of infrastructure, management, basic technologies, social
networks and virtual reality.

[35]
• Discussed techniques related to the underlying metaverse and

proposed an overall framework for the metaverse.

EC

[120] • Discussed the convergence of EC and metaverse infrastructure.

[115]
• Discussed the application of EC and blockchain in the

metaverse.

AI

[31] • Discussed the application of AI in the metaverse.

[119]
• Discussed the application of AI and blockchain in the

metaverse.

Privacy security

[138]
• Discussed security and privacy issues existing in the current
metaverse from the perspectives of information, communication,
scenarios and commodities.

[106]
• Discussed privacy and security issues in the metaverse from
seven aspects: identity, data, network, economy, governance, and
the impact of physical society.

SCC
This

article

• Discuss the role of SCC technologies, formed by the
integration of communication, sensing and computing
technologies in the metaverse.
• Discuss the application of four technologies, including AI, 6G,
EI and blockchain, which facilitate the implementation of SCC in
the metaverse.
• Summarize solutions including diferent scenarios, in smart
home, smart factory, medical health, intelligent transportation,
UAV and space-air-ground integrated networks in the metaverse.

1.2 Contributions

This article focuses on SCC in the metaverse, and the speciic contributions are summarized as follows:

• We initially introduce the relevant properties and the architecture of the metaverse. Then, we discuss the
enabling technologies including 6G communications, Edge Intelligence (EI), DT and blockchain, which can
provide strong supports for the realization of the metaverse from aspects of communication, computation,
virtual-reality mapping and security.

• We discuss SCC and its characteristics by revealing its primary role for enabling technologies to meet the
current needs of the metaverse.
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• We detail six typical application scenarios and summarize corresponding SCC solutions in the metaverse
from both local and open space and provide learned lessons.

• By investigating the application of SCC in the metaverse, we outline some challenges and future research
opportunities correspondingly.

1.3 Structure

The rest of the article is organized as follows. The basic features and characteristics of SCC are described in
Section 2. Key technologies for the implementation of SCC are presented in Section 3. In Section 4, we summarize
solutions for open space and local space scenarios in the metaverse. In Section 5, we discuss open issues and
potential research directions for SCC in the metaverse. In Section 6, we summarize this article systematically.

2 ARCHITECTURE AND ENABLING TECHNOLOGY FOR METAVERSE

As a kind of virtual world mapped by the real world, the metaverse needs a huge amount of data from the physical
world for realization. Secure and reliable transmission of massive data between the physical world and the virtual
world is the basis for the realization of the metaverse. Traditional communication, computing and encryption
technologies can not satisfy the requirements of transmission rate, reliability and security in the metaverse. With
the development of 6G, blockchain, DT and EI technologies, the realization of metaverse becomes a reality. This
section introduces the metaverse architecture and the enabling technologies for the realization of the metaverse.

2.1 Metaverse Architecture

With the rapid development of communication, computing, AI, and security technologies, the meaning of
metaverse is constantly expanding. On one hand, the metaverse can be a kind of parallel universe of the physical
world, providing users with an immersive experience. On the other hand, the metaverse can be the fusion and
interaction of the virtual world and the physical world. Therein, the things in the real world can be synchronized
to the virtual world, and the behaviors of human beings in the virtual world have corresponding impacts on the
physical world. The ultimate development of the metaverse is a new type of world, in which the physical world
and the virtual world merge and interact, i.e., the łintegrated worldž.

As shown in Fig. 2, as a world where the virtual world and the real world merge, the metaverse mainly consists
of the physical world, the virtual world, and the enabling technologies that support the interaction between the
virtual and the real. Each stakeholder in the physical world controls the components that afect the virtual world.
Stakeholders can make an impact in the virtual world, and the impact provides feedback to the physical world.
The main stakeholders are:

• Users: They can immerse themselves in the virtual world by wearing devices such as head-mounted displays
or virtual reality goggles through their digital bodies. In the virtual world, users can interact with others’
digital bodies by manipulating their own digital bodies.

• IoT sensors: They are deployed in the physical world, and maintain as well as update the virtual world with
the information collected from the physical world. For example, DT models of physical entities are realized
based on the acquired physical world-aware data. Current wireless sensor networks are independently
owned by sensor service providers, which can provide real-time sensory data to virtual service providers
to generate and maintain virtual worlds.

• Virtual service provider: Its major focus is on the development and maintenance of the metaverse. Similar
to YouTube, the metaverse prefers to enrich itself with user-generated content such as games, art and social
applications. This user-generated content can be created, traded and consumed in the metaverse.
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Fig. 2. The brief architecture of metaverse.

• Physical service provider: It operates the physical-world infrastructure to respond the operations in the
virtual world. These operations include not only the invocation of computing and communication resources
at the network edge, but also speciic transactions in the physical world for payments made in the metaverse.

The realization of such a fusion world requires not only a large amount of data from the physical world, but
also advanced technologies to support. It starts with creating a virtual world that can interact with the physical
world synchronously, i.e., the things in the real world need to be mapped in the virtual world, and thus a large
quantity of computing resources are required. Although cloud computing is powerful, information needs to be
uploaded to the remote server for processing. It can not meet the low-latency requirement of the metaverse, and
a computing paradigm, that is closer to the source of the generated information, is imperative. As the integration
of Artiicial Intelligence (AI) and Edge Computing (EC), Edge Intelligence (EI) can provide users with intelligent
decision making and lexible support at the network edge, to cope with the requirements of the metaverse.
Furthermore, the realization of the immersive experience in the metaverse requires real-time massive data

interactions between physical and virtual worlds. Current communication technologies can not meet the require-
ments of throughput, latency, and connection density in the metaverse to achieve a fully intelligent network
that can provide an immersive experience for users [68]. 6G communication is promising to provide ultra-dense
connection, ultra-low latency communication, and ultra-high network throughput, which is a key technology
to cope with the performance requirements in the metaverse. The ultimate realization of the metaverse is that
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physical and virtual worlds can be integrated to interact with each other, requiring the mapping and interaction
between them. DT can map information from the physical world to the virtual world for processing. By integrating
with AR, VR and XR technologies, it can realize the mutual mapping of virtual and reality things.

The metaverse not only generates a large amount of user privacy data, but also constructs its own economic
system and related laws and regulations. Therefore, ensuring data security and stability as well as eicient
operation of the economic system in the metaverse requires secure data sharing technologies. Blockchain, as
a secure and eicient distributed data sharing technology, can not only ensure data security in the metaverse,
but also achieve stability, eiciency, transparency and certainty in the operation of economic systems in the
metaverse.

In summary, the implementation of metaverse places high requirements on the communication and computing,
the mapping between virtual and physical worlds, and privacy and security technologies. In order to address
these requirements, the rest of this section provides a detailed introduction to the corresponding technologies in
the metaverse, including 6G communication, EI, DT, and blockchain.

2.2 6G Communications

The realization of the metaverse requires real-time interaction of massive data between the virtual world and the
real world to provide users with high-quality virtual and real interaction. The vision of metaverse is to realise
a virtual world that is highly consistent with the real world. The user can perceive this virtual world not only
visually and auditorily, but also through other senses such as touch and smell. The metaverse not only puts high
requirements on data transmission latency and throughput, but also needs to enable data interaction among
multiple sensors. However, current 5G and B5G technologies cannot meet the metaverse requirements, such as
throughput, delay and connection density [22].
In contrast to the 5G network, the 6G network produces dramatic changes in the main KPLs. It has Tbps-

class peak speeds, 10 to 100 Gbps experience rates, sub-millisecond latency, ultra-high throughput (up to 1Tb/s
throughput), ultra-large connection density (up to 107devices/��2 ), and can also provide stable communications
for moving objects with speeds over 1000km/h [86]. The rapid growth of wireless traic is driving the demand
for high spectrum for wireless communications. In order to achieve wide coverage, mobile infrastructures prefer
low frequency bands for network upgrades, which is prompting wireless technologies to develop new frequency
bands for network upgrades [23]. To address these issues, 6G not only uses millimetre-wave spectrum, but
also uses terahertz and even the visible spectrum, promising the irst use of year-round spectrum for extreme
connectivity. 6G has two application scenarios of AI and perception, which can not only sense and transmit
various environmental information, but also sense people’s sensory and emotional information, establish the
interconnection of everything, and provide prerequisites for the realisation of SCC [32], which makes 6G cross the
łPeople Connectiož and łThing Connectionž, and move towards the Internet of everything. The current generation
and development of Intelligent Relective Surface (IRS), multiple access and beam assigment technologies enable
wireless interactions for both line-of-sight and non-line-of-sight users, providing communication support for
metaverse users to realise the immersive experience.
Based on characteristics such as ultra-low latency, high energy eiciency, and ultradense connectivity, 6G

communications are currently being used by researchers in a variety of scenarios. To ensure the rapid estab-
lishment of user channels in highly dynamic and time-varying channel scenarios such as IoV, 6G and sensing
technologies are combined to quickly acquire the channel state, and AI algorithms are used to reduce the noise of
the collected channel information and predict the beamforming weights to achieve phase synchronisation [124].
This improves the throughput of multi-vehicle collaborative message transmission, and message transmission
reliability and distance. By applying 6G communication technology to UAV scenarios and utilising MIMO and
terahertz band communications, the UAV’s movement trajectory design can be jumped from 2D to 3D, and
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multi-UAV collaborative information transmission can be also realised [6]. 6G communication technology and
Space-Air-Ground Integrated Network (SAGIN) framework are combined to achieve ubiquitous communication
coverage by intelligent communication and efective allocation of heterogeneous network resources [127].
Overall, 6G communication provides a strong support for information interaction between the physical

world and the virtual world. In addition, 6G communication also brings security risks. How to ensure that 6G
communication can achieve safe and reliable data interaction between the virtual world and the real world is an
interesting topic.

2.3 Edge Intelligence

EI refers to the integration of AI with Mobile Edge Computing (MEC) technologies, which presents possibilities
for the implementation of current computation-intensive AI applications [51]. The metaverse, as an immersive
virtual world, requires data transmission with ultra-high throughput and ultra-low latency to allow for a realistic
experience. Traditional cloud intelligence requires endpoints to transmit data to the cloud when training the
learning model, which can lead to signiicant latency, energy consumption, network congestion and privacy
and security issues. Thus, cloud computing architectures are unable to realize the vision of łintelligence every-
wherež [96]. Close to users and easy to deploy, edge servers such as cellular base stations and wireless access
points can provide cloud-like computing resources at the network edge, which can compensate for the limited
computing resources of mobile devices.
EI allows the acquired data to be transmitted to the edge server, and perform training and inference of EI

models at the network edge. Depending on ubiquitous computing resources at the network edge, low-latency
and highly reliable EI services can be realized by using fewer computing, communication and storage resources
compared to cloud intelligence [82]. By nesting the training of AI models at edge nodes, there is no need to
upload large amounts of data to the cloud. As a result, EI can help to reduce network congestion and energy
consumption [36].
The training of EI models typically involves a loss function and a global model. By considering dynamic

communication and computing environments when training models for EI, eicient distributed algorithms are
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required. As shown in Fig. 3, based on data and model partitioning principles, current edge learning models can
be divided into three categories, i.e., Federated Learning (FL), decentralized learning and model split learning [36].

• FL is a collaborative ML algorithm that allows users to collaboratively train learning models on the edge
nodes, and then integrates them to form a global model on a dedicated edge server without accessing users’
private data [48]. As shown in Fig. 3(a), diferent edge nodes use their own private data for model training,
and then upload the trained parameters to a dedicated server for model fusion. After that, the server feeds
back the updated parameters to edge nodes.

• Decentralized learning utilizes peer-to-peer communication to enable the training of global models. As
shown in Fig. 3(b), diferent users train models based on their own data, share them with adjacent nodes,
and then integrate their trained models with the pre-nodes’ models to form the global model.

• Model split learning enables a collaborative learning process by dividing the model parameters across edge
nodes. As shown in Fig. 3(c), each edge node, including the edge device and the edge server, is responsible
for training their own part of parameters, which are then uploaded to the edge server for global model
construction. After that, the global parameters are fed back to the node for training.

Based on its strengths, EI can be used in industrial Internet [79], smart city [100], healthcare [71], Intelligent
Transportation System (ITS) [72, 102, 113], UAV networks [101], wireless powered MEC [49, 97, 98, 100], AR/VR,
etc. For example, EI can provide low-latency data processing for the smart city where massive amounts of IoT
data are generated [45]. In healthcare, EI can enable applications that require ultra-low latency, such as remote
medical care and remote surgery. EI can also achieve intelligent decision-making at the network edge, which
greatly reduces the occurrence of accidents in ITS, and also improves the user experience of the metaverse.

2.4 Digital Twins

As a virtual world created by AI, how to map objects in the physical world to the virtual world is one important
issue. DT is a multi-disciplinary, multi-physical quantity, multi-scale simulation system, allows objects from the
physical world to be mapped in the virtual world by using data captured by sensors, and can have an impact
on the physical world by using these real data in the virtual world for calculation and training [89]. At present,
there are many studies on DT. It is considered to be a system that enables a reciprocal symbiosis between the
physical world and the virtual world, and can evolve itself (i.e., self-adaptive, self-regulating, selfmonitoring, and
self-diagnostic) by synthesizing other research on DT [66] and the requirements for metaverse implementation.

The goal of DT is to map the information in the physical world to the virtual world, and then use the collected
multimodal data in the virtual world to approximate the various objects and environments in the physical world,
and ultimately assist the physical world to make relevant and correct decisions and judgements [15]. There
are several important enabling technologies for DT, including ML, cloud, fog and edge computing, AR and VR.
Among them, ML acts as the foundation and brain of DT, using which the data mapped into DT can be quickly
and efectively integrated, not only to optimise the virtual world mapping of DT [142], but also to make efective
decisions about the relevant domains [122]. Since DT mirrors an entire complex range of systems, it requires
massive amounts of computing resources [15]. The use of cloud, fog and edge computing technology can make
use of computing resources of all layers and provide suicient resource support for the implementation of DT.
VR and AR technologies enable the interaction of the virtual world with the physical world. VR is achieved by
simulating a virtual world to provide people with an immersive experience [11].
Taking the advantage of breaking the time dimension limit in the virtual world and the powerful computing

resources in the DT platform, it is possible to realise real-time analysis and decision-making of the physical world
data uploaded to the DT. Based on real-time sensing and data analysis capability, DT can enable eicient resource
allocation [21] and quality inspection [52] for smart factories. It can also provide an emerging architecture
for the industrial Internet [59, 60, 85], by combining DT with edge computing to make intelligent decisions.
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Applying DT to healthcare can provide a new type of medical system [19] that can assist medical staf in treating
patients, by identifying problems in a timely manner based on real-time information as well as relevant historical
information. By applying DT to highly dynamic scenarios such as ITS and UAV networks, intelligent terminals can
obtain information related to future systems with the help of powerful computing, communication and control
capabilities [47]. DT can also enable collaboration among participants [30, 47, 133] to improve the utilization of
system resources, predict the movements of participants in ITS and UAV networks [63, 94], and timely adjust
participants’ paths, speeds and other attributes to efectively avoid safety problems. Although DT has many
applications, it is still in the theoretical stage, and the real-life applications for DT still need to be explored.

2.5 Blockchain

The realization of the metaverse requires the data support of massive terminals and sensors. These data contain
information about the surrounding environment and personal data of the provider. Without data protection,
serious security and privacy issues can be caused. Therefore, how to ensure the privacy and security of metaverse
data and realise the endogenous security of metaverse is currently a hot topic of research. Blockchain technology
is a data structure that preserves digital transaction records, also known as distributed ledger technology [3].
In a blockchain, the data is organized into a growing list of hash-chain ledgers that have been timestamped
and veriied by consensus operations [99, 105]. Through the design of hash chain blocks, consensus algorithms
and smart contracts, blockchain technology can ensure the robustness of the metaverse. According to diferent
application scenarios, blockchain is further divided into: public blockchain, federated blockchain and private
blockchain [56]. Blockchain can be also classiied into permissionless blockchain and permissioned blockchain
based on diferent trust building methods [146]. The permissionless blockchain is a completely open blockchain
where any user can participate in the network. Permissioned blockchain is a semi-open blockchain where only
users who have been given something or recognised can participate in the network. Both federated blockchain
and private blockchain belong to permission blockchain. Due to the special structure of blockchain and the
adoption of technologies such as consensus mechanism and smart contracts, blockchain technology has the
following characteristics:

• Decentralization: Transactions in the blockchain are veriied, transmitted and managed based on individual
nodes. They are stored in a distributed manner without the need for jurisdiction and identity veriication
provided by third-party institutions. This can signiicantly reduce the cost of services and the risk of single
points of failure.

• Immutability: Due to the hash chain structure of the blockchain, any modiication to any block in the
blockchain invalidates all subsequent blocks. In addition, once the blockchain is formed, the data in the
block can not be changed.

• Traceability: All kinds of data collected, shared and transmitted throughout the lifecycle of an IoT service
are recorded in the blockchain, inherently providing traceability of trusted information.

• Transparency: Any entity involved in the blockchain can access and publicly verify transactions and the
global state of the blockchain.

• Interoperability: The blockchain is a public or semi-public information platform, and can provide uniform
access rules for data, breaking down traditional technical barriers for individual entities.

Based on the above characteristics, the information of end devices, transmission data, processing data and
digital transactions in the metaverse can be inscribed in the blockchain in the form of transactions and without
the inclusion of third-party institutions [145]. This can signiicantly reduce the cost of services and also ensure
the traceable, reliable, non-tamperable, and non-repudiation nature of information and transactions. With
the development and advancement of technologies, some latency-sensitive applications and scenarios can be
implemented in the metaverse, where the traditional blockchain technology is unable to process massive amounts
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of data with low latency. To cope with the above problems, of-chain computing techniques have been proposed
and studied. The authors in [121] leverage idle network computing resources for of-chain computing to process
computationally intensive and latency-sensitive task executions. The authors in [132] increase the blockchain’s
scalability and achieve high-throughput data transactions by moving on-chain transactions of-chain. In addition,
the blockchain can permanently track node behaviors through cryptographic evidence, especially for the supply
chain, thus promoting a fair, transparent and auditable environment and preventing the misuse of personal data.
Based on its outstanding features described above, the blockchain can not only keep data security and privacy,
but also ensure that relevant laws and regulations of the future metaverse can be implemented in a fair and just
manner. Currently, blockchain is widely used in smart industry [60], smart transportation [3], healthcare [55],
smart grid [70] and other scenarios.

3 SCC TECHNOLOGY FOR THE METAVERSE

Due to the performance requirement of metaverse, the implementation complexity of techniques described above,
and the limitations of existing wireless network resources [43, 78], one-dimensional resource optimisation does
not work well. For example, in the environment with the heterogeneous network structure and time-varying
channel conditions, reliable and stable interactions among nodes need to sense the channel and the surrounding
environment state, and fuse the relevant environmental information for real-time channel modelling [32]. In the
case of computation-intensive tasks and heterogeneous network resources, eicient utilization of computing
resources and real-time processing of computing tasks not only require a reasonable match between the amount
of computing tasks and computing resources, but also require real-time channel modeling through the perception
of environmental information to cope with time-varying environments [28, 116]. Thus, SCC is the foundation for
the above technologies, which can meet the requirements such as ultra-low latency, ultra-high throughput and
ultra-density connections through joint allocation of sensing, communication, and computing resources in the
network.

3.1 The Integration of Sensing and Communication

With the rapid development of IoT, the number of IoT devices is growing exponentially, which makes the spectrum
congestion problem become a major issue for the implementation of metaverse. Limited bandwidth resources and
the rapidly growing number of IoT devices are driving the development of Integrated Sensing and Communication
(ISAC) technologies [137], which combine sensing and communication signals, and allow them to share the same
waveform, spectrum, wireless infrastructure, and RF hardware, etc. Thus, ISAC not only improves spectrum
utilization and alleviates spectrum scarcity, but also avoids the high cost of building dedicated wide-area sensing
infrastructure and helps to unlock the maximum potential of cellular networks [110] [108].
There are currently two major approaches for ISAC: radar-communication coexistence and dual-functional

radar-communication. The former designs radar sensing and communication as two separate systems with
their own waveforms, separate transmitters and receivers. The interference can be reduced by appropriate
resource allocation. In the latter case, radar sensing and communication functions are integrated in a single device.
Nowadays, the design of beamforming and waveforms to improve spectrum utilization and communication
performance is an important challenge for ISACs. Numerous researchers have investigated how to design ISAC
waveforms [8, 57, 137] and beamforming [95, 131]. Due to the potential beneits of integrating sensing and
communication functions, ISAC systems have attracted attention in several ields, such as in-vehicle networks,
UAV communication and sensing [53].
Based on the fact that ISAC allows sensing and communication signals to share the same spectrum and

waveform, ISAC can greatly reduce the delay of beamforming as well as beam alignment. Based on this, authors
in [26, 54, 75, 103, 126] focus on intelligent transportation scenarios. The problem of predictive beamforming
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for connected vehicles is addressed in [54] and [126]. Unlike conventional beam tracking methods based on
communication feedback, the approach based on ISAC technology does not require dedicated frequency guidance
for the downlink and feedback for the uplink, which can eliminate the additional overhead generated by beam
tracking and feedback, and improve the spectrum utilization and spectral eiciency of the system. Authors in [75]
focus on the waveform design when communicating with connected vehicles. The joint waveform design problem
is solved by ISAC operational frequency selection. A real-time traic management system is presented in [103].
By using the ISAC approach, information-carrying terminals can quickly select the appropriate information
uploading strategy to minimize transmission delay and improve user experience. An intelligent real-time dual-
function radar system is presented in [26], based on ISAC technology that allows Automatic Vehicles (AVs) to
perform both radar sensing and data communication functions, to maximize bandwidth utilization and improve
communication security.

Diferent from cars, UAVs are widely used as transmission relays and for emergency communications because
of their convenience and lexibility. Conventional UAVs are designed with separate sensing and communication
modules, and each with separate spectrum and transceivers. ISAC technology allows sensing and communication
modules to share the same hardware and spectrum, reduces the load on the UAV and improves the spectrum
utilization [13]. Authors in [13, 110] investigate the application of ISAC in UAV networks. By using a uniied
spectrum and signal transceivers, the cooperative sensing capability of UAVs is greatly improved.

Although ISAC can greatly reduce the transmission delay, computing resources are diferent among IoT devices.
Nodes with low computing resources to process computation tasks incur high latency, and those with high
computing resources may cause resource wastage. The implementation of the metaverse requires not only fast
data interaction between the virtual world and the real world, but also suicient computing resources to ensure
large-scale scene rendering in the metaverse. Therefore, how to reasonably utilize the computing resources
among IoT devices is an issue that needs to be solved.

3.2 The Integration of Communication and Computing

The metaverse provides users with an immersive reality-expanding experience that requires not only the real-time
interaction of large amounts of real data from the physical world, but also the rapid processing of data and the
rendering of virtual scenes in real time. The metaverse contains numerous delay-sensitive and computation-
sensitive application scenarios that current communication and computation technologies cannot support under
resource-limited conditions [115]. The Integration of Communication and Computing (ICAC) can be understand
from two aspects. On one hand, it uses computing technology to assist end-to-end communications to achieve
low latency and high throughput. On the other hand, enhanced communication technologies can in turn enhance
the allocation of computing resources. ICAC technology can not only efectively reduce network communication
and computation delays, but also achieve reasonable resource allocation in the network [143].

ICAC can be divided into two paradigms: communication-centric [123] and computing-centric ones [140]. The
former uses technologies such as fog computing and EC to optimize end-to-end communication by invoking
ubiquitous computing resources in the network, thereby achieving low latency and high throughput. The latter
collaborates the nodes in the network through communication technology, which can realize the reasonable
scheduling of computing resources to improve resource utilization eiciency. Based on its advantages of low
latency and high throughput, ICAC is widely used in highly dynamic scenarios such as IoV and UAV networks.
The implementation of various scenarios in the metaverse does not rely on a single network, but many

heterogeneous networks collaborate with each other to provide intelligent services. Therefore, how to reasonably
utilize the computing resources of heterogeneous networks and realize the collaboration among heterogeneous
networks is amajor problem. Current researchers have combinedDT and ICAC, using ICAC to select suitable nodes
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for DT construction, and relying on powerful computing resources in DT to synthesize data in heterogeneous
networks and make accurate decisions [30, 133].
Due to the massive access of users and intelligent terminals, network security and data privacy are also

important issues in realizing the metaverse [106]. Currently, many scholars apply blockchain to guarantee user
privacy and security. However, since transactions in the blockchain require consensus protocols to ensure data
synchronization to achieve ledger consistency, it can cause serious resource consumption (such as computing and
energy resources) and incalculable computing latency in the metaverse, where massive data support is required.
Currently, based on ICAC, low-latency communication among nodes and rational utilization of computing
resources can be achieved. Many researchers have started to focus on the use of of-chain computing resources [58]
to improve resource utilization eiciency, and reduce energy consumption caused by large-scale on-chain
computing.

3.3 The Integration of Sensing, Communication and Computing

The implementation and application of the metaverse has severe communication requirements in terms of
extremely low latency, extremely high reliability, extremely large bandwidth and massive network access. The
relevant applications in the metaverse should not only provide users with visual and auditory sensory experiences,
but also with tactile, gustatory and even olfactory sensory experiences, which greatly increases the requirement
for perceptual accuracy in the metaverse. The current limited wireless channels and computing resources can
hardly satisfy the demand of applications in the metaverse. Due to the similarities of communication frequency
bands, hardware devices, channel characteristics, and signal processing between communication and perception
systems in the post-5G era, along with the current development of AI technology, the above conditions have
greatly contributed to the development of SCC technology.

Generally, SCC technology can be regarded as a fusion of communication, sensing and computing technologies.
Speciically, SCC applications can be classiied as: communication-centric, perception-centric and computation-
centric ones. Since SCC technology is currently in the exploratory stage, current research on SCC focuses on
channel design (communication-centric) and multidimensional resources allocation (computation-centric). As
shown in Fig. 4(a), the former focuses on obtaining a priori information about the channel by sensing techniques,
and then using techniques such as AI and AirComp to achieve fast aggregation of channel state information,
thus enabling eicient and green communication among users and between users and servers. As shown in
Fig. 4(b), the latter focuses on the integrated allocation of multidimensional resources such as computation
and communication. Based on ISAC technology, IoT devices can be equipped with radar sensing as well as
communication capabilities. With radar sensing, the estimation of channel environment and terminal data can be
realised. By selecting the appropriate uplink channel as well as the transmission frequency, the computational
tasks can be reasonably oloaded to the servers with suicient idle computational resources, so as to carry out
reasonable allocation of computational and communication resources in the ubiquitous network. Based on SCC, it
can not only relieve the challenge of limited channel resources arising from the access of massive terminal devices
in the metaverse, but also carry out comprehensive scheduling of idle computing resources in the network, thus
reducing the cost of metaverse realisation.
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Fig. 4. Technical details of SCC applications.

The realisation of the metaverse requires a huge number of intelligent terminals to access the network, and
the contradiction between the current limited wireless resources and the huge number of users accessing the
network is becoming intense. How to efectively utilise resources in ubiquitous networks is a topic of interest. As
shown in Table 2, the authors in [29, 37] focus on this problem and propose SCC-based systems. The channel
environment and computing resources of servers are detected by sensing techniques, and the allocation of
communication and computation resources is dynamically adjusted according to the requirements of diferent
intelligent applications for latency, energy consumption, model accuracy, and so on. Unlike [29, 37], the authors
in [44, 93] focus on channel modelling under SCC. By applying AI and AirComp on the basis of ISAC, not only the
dynamic modelling of communication channels can be achieved, but also spatial multi-functional computations
can be performed simultaneously based on spatial degrees of freedom. Current research on SCC focuses on
the modelling of communication channels and the efective utilization of multidimensional resources such as
communication, computation and perception in the new paradigm. Research on how to use communication and
computation technologies to improve perception technology is a direction to explore.

4 SCC SOLUTIONS FOR THE METAVERSE

As an immersive virtual world, the metaverse requires a large amount of real-time data to ensure the authenticity
of user experience. There are various scenarios in the metaverse. However, diferent scenarios have diferent
performance requirements for latency, data transmission rates, reliability, sensing accuracy, sensing ranges,
computing resource utilization, etc. According to the size of network coverage, application scenarios in the
metaverse can be mainly divided into the local space scene and the open space scene. The former refers to the
scene with a small network coverage area achieved by using a few base stations. The latter refers to a scenario
with a large network coverage area and multiple base stations. This section discusses existing technologies and
solutions to meet performance requirements in diferent scenarios.

4.1 Solutions for Local Space Scenes

This subsection focuses on three scenarios: smart home, smart factory and medical health.
1) Smart Home: The majority of contemporary life is spent indoors, and with the explosion of COVID-19,

people spend less and less time outdoors. Smart home is an embodiment of the IoT, which can identify activities of
indoor individuals through ISAC, and obtain indoor information remotely through intelligent terminals, greatly
improving the intelligence of people’s life [38]. At present, people intend to experience the intelligence of life
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Table 2. Comparisons of SCC related surveys.

Ref. Focus Description Advantage Disadvantage

[103] ISAC
An ISAC-based
real-time traic
management system

Focusing on dynamic

network topologies

Eicient utilization of
computing resources is
not taken into account

[26] ISAC
An ISAC-based
intelligent real-time
radar system

Concerned about the
utilisation of radio
spectrum resources

Ignoring the privacy
and security of
endpoint data

[30] ICAC
An exercise autopilot
scheme based on ICAC
and DT

Taking the cost of
autonomous driving
services into
consideration

Ignoring end-vehicle

data privacy

[133] ICAC

An edge resource
management
framework based on
ICAC and DT

Concerned about the
rational scheduling of
heterogeneous
resources at the
network edge

Ignoring
communication energy
consumption

[37] SCC
A DT-based SCC

system

Concerned about
system energy
consumption and
sensing beam gain

Ignoring
communication
reliability

[29] SCC

A multi-unit
collaboration-based
ISAC approach for
edge Intelligence

Focusing on
multidimensional
resource allocation and
overall energy
consumption

Ignoring dynamic
scenarios and
communication
reliability

[93] SCC

A wireless network
framework integrating
sensing,
communication and
computing

Considering the total
sensor power
constraint and energy
consumption

Ignoring computation

delays

[44] SCC
An SCC-based MIMO
transmission
framework

Considering the
limitations of wireless
communication
resources and
supporting MIMO
scenarios

Ignoring dynamic
scenarios and
reliability of
communication links

brought by intelligent furniture, which is limited by the space dimension. The metaverse is a virtual world
parallel to the physical world, where people can access in a digital body at any time and from anywhere through
human-computer interaction devices. By arranging smart homes in the metaverse, the spatial limitations of smart
homes in the physical world can be broken.
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By arranging virtual scenes of each family in the metaverse, people can realize friends and family gatherings
without leaving home, and provide a new paradigm for the current year-round workers and border guards to
gather with their families. To achieve the above purpose, it requires not only access to large-scale smart terminals,
but also accurate positioning and target recognition. In order to improve the experience of smart home users
in the metaverse, the authors in [10, 18, 46, 77, 80, 118, 130] focus on target recognition in the smart home. To
achieve high-accuracy target recognition, an algorithm for sleep monitoring is proposed in [130]. The model
uses a statistical approach to detect the auto-correlation function of the channel state information as well as
the indoor multi-path signals, which allows for faint signals in the room, to improve the accuracy of people’s
sleep monitoring. Diferent from the study in [130] utilizes traditional statistical methods to optimize target
recognition accuracy and system latency, authors in [10] propose an ML-based target recognition system. It uses
histogram equalization technique and FL to assist faster-R-CNN for subject behavior image recognition, which
reduces the computational load. FL allows models to be transmitted with only model parameters and no sensitive
data, which not only reduces the delay in data transmission, but also improves the accuracy of model detection.
Unlike [10, 130] where an existing action set is applied to train a target recognition model to improve target

recognition accuracy, a transformer network consisting of a nearest-neighbour-based domain selector and a
ine-to-coarse-grained cross-domain sensing framework is proposed in [80]. The framework embeds a hierarchical
transformer structure based on convolutional maps and an improved linear layer into an end-to-end deep network
to quickly identify meta-actions with a small number of action samples, which not only improves the accuracy of
identiication but also reduces the computational latency of target identiication. The authors in [77] focus on the
real-time nature of the sensory data, using Wi-Fi to transmit the sensory data to an edge server, where the data is
fused and classiied by a lightweight deep learning model. The system not only aims to accurately detect real-time
activities of daily living, but also tries to improve the quality of data transmission. The authors in [46] have taken
into account the memory constraints of AIoT devices and propose a lightweight CSI and a double hidden layer
BP neural network based on particle swarm optimisation algorithm, by fusing the extracted relevant features to
reduce the computational memory occupancy of the device and achieve real-time high-precision recognition.
Although the methods proposed by [10, 46, 77, 80, 118, 130] can efectively improve the accuracy of target

recognition in smart home scenes, they do not efectively utilize multimodal data for a ine-grained perception
of the environment to provide users with an immersive virtual experience. The authors in [18] propose a
multimodal fusion-based activity recognition scheme for Wi-Fi platforms. The solution infers the potential
behavioral information in the signal by introducing the Fresnel zone model to identify theWi-Fi signal luctuations
caused by diferent human activities, and processes the acquired multimodal information using the multimodal
decomposition bilinear pooling method and the AdaBoost algorithm, aiming to realize highly ine-grained activity
identiication. Smart home is realised in the metaverse, which needs the support of massive home sensors as
well as smart terminals. The massive smart terminals can lead to a large amount of energy loss. The authors
in [107, 128] focus on the energy consumption problem in smart home and use ML technology to achieve energy
management in smart homes. The authors in [107] propose a deep reinforcement learning-based real-time energy
management method to ensure real-time scheduling of end devices while minimising the energy consumption of
the whole home. A reinforcement learning-based energy scheduling system for smart homes is proposed in [128],
which employs a dual-delay deep deterministic policy gradient and data clustering-based algorithm to optimise
energy scheduling for energy storage, heating and ventilation, and air-conditioning system in the smart home.

We summarize solutions for the application of smart home scenarios in Table 3.
2) Smart Factory: Along with Industry 4.0, manufacturing is gradually shifting towards intelligence and

digitalisation. Digital connectivity between plant facilities and systems allows for deep analysis of plant-related
matters. Diferent from the current digital exchange, the metaverse creates a virtual world made up of numbers,
where the interaction between physical and digital space is achieved through digital technologies such as XR and
DT, which can efectively improve the production eiciency of the factory.
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Table 3. Summary of solutions for smart home
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Optimization metrics
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[130] A statistical sleep monitoring model
√ √

× × × ×
√

× ×

[10] An ML-based home monitoring system
√ √

× ×
√

× × ×
√

[18]
A multimodal fusion based activity

recognition scheme

√
×

√
× × × × ×

√

[80]
A DL-based cross-domain perception

framework

√
× ×

√
× × ×

√
×

[107]
A DRL-based real-time energy management

algorithm
× ×

√ √
× ×

√
× ×

[46]
A lightweight Wi-Fi-based target recognition

strategy

√ √ √ √
× × × × ×

[77]
A DL-based multi-activity recognition

system

√ √
×

√
×

√
× × ×

[128]
A RL-based smart home energy scheduling

system
×

√ √
× × ×

√
× ×

(ł
√
ž if the protocol satisies the property, ł×ž if not)

Smart factories usually involve tasks such as scheduling of network nodes as well as robots, and multi-machine
clustering operations. There are large-scale machines in smart factories today, which generate massive amounts
of data. In order to reallize smart factory in the metaverse, ultra-intensive data interactions place high demands on
communication throughput and reliability for virtual-real interaction. To improve the communication throughput
of smart factories, the authors in [34, 91, 111, 117] propose to build a framework for industrial IoT by ML and
Software-Deined Networking (SDN). Placing the ML model at the network edge is helpful to reasonably match
the terminal computational resources and the amount of computational tasks, which in turn improves the data
transmission throughput in the case of limited communication bandwidth [111, 117]. Considering the real-time
nature of task arrivals, an ML-based online task allocation framework has been proposed in [34], The framework
considers the computational and communication latency constraints and exploits the structure of the original
pair-wise problem formulation. The authors propose an online ML algorithm to obtain a feasible competitive
ratio of task size and edge node data rate, thus providing a reasonable match between the amount of arriving
tasks and the computational resources of the edge nodes to improve the system throughput. Considering the
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heterogeneity of smart factory networks, the authors in [91] propose an SDN-based IIoT network architecture.
An ML-based bandwidth allocation method is proposed to ensure high-throughput data transmission in smart
factories with limited bandwidth.
Unlike [34, 91, 111, 117] which focus on system throughput and latency, the authors in [92] propose a Smart

Manufacturing Transfer Learning framework (FTL-CDP) for applications with limited training data. The FTL-CDP
combines the concepts of federated learning and transfer learning to address the challenges of data scarcity and
privacy for realising machine intelligence in Industry 4.0 environments. Distributed training is supported to
protect data privacy while allowing trained models to be exchanged across diferent domains, such as target
detection and pedestrian detection, to speed up the training process with a limited amount of data.
At present, multi-machine collaboration exists in the smart factory. For robots, production machines, goods,

vehicles and other units, a uniied platform is needed for scheduling. An edge-intelligent autonomous system
for multi-user computation oloading in smart factories is proposed in [17], focusing on joint optimization of
energy consumption and task latency. An improved deep deterministic policy gradient algorithm is proposed,
which uses the actor network to formulate computation oloading policies, extending the operation space of each
user device to be contiguous. That is to say, each task can be oloaded in any proportion, to improve resource
utilization and open up possibilities for total system latency optimization.
However, applying smart factories in the metaverse requires massive computing resources to process the

huge amount of data in the physical world to ensure the realism of the rendering of the virtual world and
the accuracy of parameters in the factory. Currently, merely relying on EC cannot provide enough computing
resources for timely data processing. Meanwhile, the data privacy cannot be guaranteed when the terminal data
is directly uploaded to the virtual world. To overcome the shortage of computational resources, the authors
in [4, 21, 59, 85] utilize DT to ensure the efective mapping of smart factories in the virtual world. By taking the
advantage of DT time dimension, a DT-based dynamic interaction time scheduling scheme is proposed in [21].
A fast non-dominated sorting genetic algorithm is proposed to ensure that the system transmission delay and
scheduling lexibility are optimised while energy consumption is minimized.

Unlike [21], the authors in [4, 59, 85] are more concerned about the privacy and security of the end data. Since
constructing a DT model requires terminal nodes to frequently exchange data with the BS, by using FL to assist in
constructing a DT model, the terminal nodes only need to upload their operational status to the DT [59, 85]. It not
only reduces the communication pressure of the wireless network, but also ensures the privacy and security of
terminal data. A blockchain-assisted hierarchical federated learning platform to support Industry 4.0 is presented
in [4]. The platform integrates DT into CPS to accurately capture the characteristics of IIoT devices. It also
employs a two-stage FL algorithm to further release the communication pressure, and uses blockchain to protect
the global model. DT-based resource scheduling for smart factories has been implemented in real-world factories.
For example, Nvidia Omniverse allowed BMW to combine its physical-world factories with DT, AI, and robotics,
to improve the precision and lexibility of factories, increasing BMW’s planning eiciency by 30% [115].

We summarize solutions for the application of smart factory scenarios in Table 4.
3) Medical Health: Since large-scale IoT devices are used in the healthcare, Healthcare Internet of Things

(HIoV) emerges. The application of some revolutionary technologies, such as VR, big data, DT and blockchain,
can greatly reduce the cost, enhance the performance and expand the coverage of healthcare services [31].
The metaverse allows 2D virtual images to be transformed into 3D virtual scenes, allowing users to immerse
themselves in healthcare services. By placing intelligent medical scenarios in the metaverse, HIoV can not only
make quick judgments based on the fusion of virtual and real-world information to assist medical workers, but
also enable doctors from diferent hospitals to share a room for medical treatment and remote consultations in
emergency situations.

In order to accurately identify the resulting disease based on the patient’s demeanour, smart healthcare requires
a high degree of accuracy in target recognition. The authors in [1, 9, 19, 42] are concerned with the problem of
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Table 4. Summary of solutions for smart factory

Ref. Description
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[117] A DL-based industrial IoT architecture × ×
√

×
√ √

× × ×

[91]
A SDN-based heterogeneous industrial

Internet architecture
×

√
×

√ √ √
× × ×

[85] A DT-based industrial IoT framework
√ √ √

×
√

× × × ×

[59] A DT industrial IoT edge network ×
√

×
√

× ×
√

×
√

[17]
An autonomous system for multi-user

computation oloading
×

√ √ √
× × ×

√
×

[21]
A DT-based scheduling system for job

shops in smart factory
×

√ √ √ √
× × × ×

[34]
An ML-based online task assignment

framework
×

√
×

√
×

√
× ×

√

[92]
A cross-domain predictive federated

transfer learning framework
× × ×

√
×

√
×

√ √

[4]
A blockchain-based platform for

hierarchical federated learning

√
×

√
×
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× ×

[111]
A data transfer architecture based on cloud

edge collaboration

√
×

√
×

√
×

√
× ×

(ł
√
ž if the protocol satisies the property, ł×ž if not)

disease recognition accuracy, in which the authors in [1] propose a DL-based system for automatic detection of
non-invasive patient discomfort. Data mining association rules are utilized to transform these detected key points
into six main body organs, and distance and time thresholds are applied to classify movements as associated with
normal or discomfort conditions. An RL-based method for intelligent selection of EEG signals is proposed in [42].
The method selects a subset of features by introducing the calculation of entropy and Pearson’s correlation
coeicient, and achieves intelligent selection of multi-domain EEG signal features through the interaction between
the subject and the environment. The authors in [9, 19] propose to build a disease recognition system based on
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DT, which builds and trains multiple models of surveillance data in real-time healthcare facilities, to improve the
accuracy of disease recognition through multimodal data fusion.
A DT-based telemedicine simulation system is proposed in [87] to enable an immersive user experience.

The system is divided into three layers: the perception layer, the network layer and the application layer. The
perception layer uses perception technology to obtain real-time data about the environment and patients in
the operating theatre. The network layer uses DL-based interpolation methods and an improved AG-GAN
algorithm to ilter and denoise the data from the perception layer and historical patient information, to generate
accurate patient information models in the DT. The application layer generates patient information models
based on head-mounted devices by XR and AR technologies, to improve accuracy and immersion during remote
surgery execution. Authors in [71] design an MEC-based health monitoring system, which focuses on the joint
optimization of system resource utilization ratios and costs. The system is divided into two sub-networks: Wireless
Body Area Networks (WBANs) and beyond-WBANs. Two algorithms, cooperative game and decentralized non-
cooperative game, are developed to solve the channel resource allocation problem for WBANs and to minimize
the system cost of the healthcare IoT, respectively.

The privacy and security of healthcare applications is challenging to ensure, because they require access to a
large amount of patient information to ensure the accuracy of disease diagnosis, but the patient’s information
contains a large amount of private information. Authors in [39, 40, 83, 84] focus on privacy protection in
intelligent healthcare systems. Authors in [40, 83] propose two smart healthcare systems based on blockchain and
EC technologies. Using EC allows end-user data to be calculated at the network edge, reducing the computational
pressure on the cloud. Blockchain technology and smart contracts not only enable eicient interaction between
patients and medical procedures, but also ensure secure data delivery. An FL-based Alzheimer’s disease detection
system is presented in [39] to ensure the integrity of the original data, and protect the conidentiality of the
classiication models. In addition, a new asynchronous privacy-preserving aggregation framework is designed to
protect the model aggregation process between the client and the cloud.

Authors in [84] are concerned with privacy and security while at the same time focusing on the communication
eiciency of the system. A DT enabled asynchronous learning is proposed for classiication tasks in eHealthcare
systems. The learning system is developed to improve the communication eiciency in eHealthcare systems by
sending only the extracted features during the learning process instead of sending the entire learning model.
This allows resource-constrained IoT devices to participate in the global model generation.

We summarize solutions for the application of medical health in Table 5.
Lesson 1: Clearly, the application of local spatial scenarios in the metaverse places high demands on target

recognition accuracy, data privacy and security. The problem of target recognition accuracy is addressed mainly
by a combination of perception and computation. DL can be iterated step by step using simple models, so that the
perceptual information acquired by the device can be processed at a ine granularity. FL allows the information
acquired by the perceptual device to be trained locally without the need of uploading the private data to the
cloud, ensuring data security.

Nevertheless, current information has a variety of types and forms, and the combined perception and computing
method cannot obtain multidimensional information to ensure high recognition accuracy. At present, communi-
cation and perception technology tends to be the same in terms of both hardware and spectral characteristics.
On one hand, using communication-perception integrated signals can achieve multi-dimensional perception.
On the other hand, it can achieve the acquisition of the best transmission channel to ensure reliability and
throughput of tranmismitted data. Therefore, it is promising to utilize SCC technology to realize the multimodal
data transmission and processing to support the application requirements of local spatial scenes in the metaverse.
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Table 5. Summary of solutions for healthcare
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Optimization metrics
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[1]
A DL-based non-invasive automated patient

discomfort monitoring system

√ √
× ×

√
× ×

√

[19] A DL-based context-aware healthcare system
√ √

× × × × ×
√

[87] A DT-based telemedicine simulation system
√ √

×
√

× × × ×

[71] An MEC-based health monitoring system ×
√ √ √

× ×
√

×

[40] A home healthcare framework ×
√

× × ×
√

×
√

[39]
A privacy-preserving Alzheimer’s detection

system for healthcare

√ √
× × × ×

√ √

[83]
A blockchain-based patient-centric HIoV

system
×

√
×

√
×

√
×

√

[42]
An RL-based multi-domain EEG signal

selection system

√
× ×

√
×

√
× ×

[9] A DT-based healthcare control system
√ √

×
√ √

× × ×

[84]
A DT-ASFL based healthcare task

classiication system
×

√
×

√
× ×

√ √

(ł
√
ž if the protocol satisies the property, ł×ž if not)

4.2 Solutions for Open Space Scenes

The metaverse’s application scenarios include not only indoor scenarios such as smart homes, smart factories,
and smart healthcare, but also open space scenarios such as ITS, SAGIN, and UAV networks. Open space scenarios
have higher requirements for latency, connection density, and network coverage compared with indoor scenarios.
The limited wireless communication and computing resources of traditional network infrastructures can not
always satisfy the demands of the above application scenarios. The metaverse is a virtual world that integrates
many technologies such as AI, DT and EI to make optimal decisions for the allocation of network resources.
The ultimate goal of the metaverse is to turn the physical world into a subset, and all corners of the physical
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world need to be present in the metaverse, but terrestrial cellular networks cannot meet this need of łanywherež
coverage. At present, smart cars, UAVs, and satellites can provide computing support for the realisation of the
metaverse, and act as sensor perceptors of environmental information around the metaverse to realise the desire
for full coverage. The following content speciically summarises the relationship of IoV, UAV networks and SAGIN
with the metaverse as well as current research on these three scenarios.

1) Intelligent Transportation: It is a complex scenario consisting of systems such as vehicle control, traic
monitoring and travel information [144]. Information about road traic can be obtained through IoT sensors, edge
infrastructure, diferent types of surveillance cameras and other information sources, and various applications
in smart transportation are realized based on the processing of heterogeneous information. As a virtual world
created by AI, the metaverse processes the data perceived by the physical world in real time to provide users with
an immersive metaverse experience. Currently, edge computing and cloud computing can provide computing
resources for metaverse. However, the expensive construction cost of the edge base station as well as the
operational expenses become the bottleneck for the implementation of metaverse. With the development of
IoV, on the one hand, vehicles are equipped with powerful computing resources to provide users with a smart
driving experience; on the other hand, vehicles with computing resources are able to push the communication and
computation power to the network edge [12]. Wireless communication technology and IoV system architecture
allows idle vehicles to be used as small edge base stations. By comprehensively utilising these idle computing
resources, computing tasks can be processed in real time.
ITS is a real-time and complex system, the network topology is always changing. In this highly dynamic

scenario, the requirements for both sensing and communication capabilities are extremely high, requiring low
latency, large system throughput, high reliability, great resource utilization eiciency, real-time and accurate
detection of vehicle locations [64]. How to ensure the rational usage of heterogeneous resources as well as to
ensure the reliable and stable communication among intelligent terminals is a problem worth discussing. Through
advanced technologies such as AI, DT, EC and SCC, intelligent transportation scenarios can be mapped from the
physical world to the virtual world in the metaverse. Based on multidimensional ground sensing information and
powerful computing resources in the metaverse, latency-sensitive applications can be implemented, and global
decisions can also be made quickly and accurately, providing users with smart transportation services [33].
To ensure the user’s traic experience, authors in [67] propose an RL-based generative adversarial network

for joint optimization of transmitted packet rates, power consumption, and throughput. In addition, the authors
in [30] use virtual world resources to optimize throughput in vehicular networks. Two mechanisms are proposed:
cooperative drive based on auction game and distributed drive based on coalition game. The former is used to
quickly determine the heads and tails of vehicle rows, and the latter is used to determine the optimal group
distribution to minimize the data transmission delay and drive costs among DTs.
Since intelligent transportation is realized in a dynamic environment, the intermittency and unreliability

of communication among vehicles greatly degrades the performance of intelligent transportation. To ensure
the reliability of virtual and real data communication, the authors in [62] focus on communication throughput
along with communication reliability. An algorithm based on EI is proposed to jointly optimize transmission
delay, oloading energy consumption and packet loss rates. In addition, the work in [58] pays attention to the
security while focusing on the reliability of Telematics communication. To cope with the heterogeneous nature
of dynamic IoV, a blockchain-assisted asynchronous federated learning architecture is proposed, which performs
asynchronous learning by optimizing the selection of participating nodes and dividing aggregation slots into
local and global ones. In addition, a DAG-based hybrid blockchain is designed to store and validate learning
parameters of the model to ensure the reliability of model learning and shared data.

Authors in [139] are concerned about the connectivity of mobile users in heterogeneous networks to improve
the user’s experience. A data synchronisation framework based on DT is proposed to realize distributed data
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Table 6. Summary of solutions for IoV

Ref. Description

Optimization metrics

P
o
si
ti
o
n
in
g
a
cc
u
ra
cy

C
o
m
m
u
n
ic
a
ti
o
n
d
e
la
y

E
n
e
rg
y
co

n
su

m
p
ti
o
n

S
e
rv
ic
e
re
sp

o
n
se

ti
m
e

C
o
m
m
u
n
ic
a
ti
o
n
re
li
a
b
il
it
y

C
o
m
m
u
n
ic
a
ti
o
n
th
ro
u
g
h
p
u
t

R
e
so
u
rc
e
u
ti
li
sa
ti
o
n

U
se
rs

P
ri
v
a
cy

a
n
d
S
e
cu

ri
ty

[67] An RL-based generative adversarial network ×
√

× ×
√ √ √

×

[30] A DT-based co-driving solution
√ √ √

× ×
√

× ×

[136]
An EI-based framework for real-time edge

caching and computation
×

√ √
×

√
×

√ √

[133]
An IoV edge computing network based on

DT and multi-intelligent learning
×

√ √ √
× ×

√
×

[74] An EI-based IoV framework ×
√ √ √

×
√ √

×

[62]
An EI-based oloading and migration

algorithm in the IoV
×

√ √
×

√
× × ×

[58]
An IoV architecture based on FL and

blockchain
×

√
× ×

√
× ×

√

[16]
An MEC-based framework for adaptive

bitrate-based multimedia streaming
×

√
×

√ √ √
× ×

[139]
A DT-based data low prediction model for

heterogeneous vehicular networks

√ √
× ×

√
× × ×

(ł
√
ž if the protocol satisies the property, ł×ž if not)

synchronisation. An MEC-based framework for multimedia streaming is proposed in [16]. An adaptive quality-
based block selection algorithm is designed by combining heterogeneous edge caching and communication
resource constraints, which determines the bandwidth allocation based on a beneiciary function. The framework
aims to achieve joint optimisation of media stream transmission throughput, transmission rate and transmission
reliability.
The application of intelligent transportation in the metaverse requires a large amount of communication

and computing resources. How to realize the application of intelligent transportation in the metaverse under
conditions of limited resources is a hot research topic. An EC-based framework for real-time IoV edge caching
and computing management is proposed in [136], which tries to solve the joint optimization problem of service
caching, request scheduling and resource allocation by using Lyapunov optimization, matching theory and

ACM Comput. Surv.



24 • Xiaojie Wang, et al.

coherent alternating direction multiplier methods in an online and distributed manner. In addition, the authors
in [133] focus on diferent types of intelligent vehicles with diferent capacities, diferent applications with diferent
resource requirements, and unpredictable vehicle topologies. The article combines DT with EI to adaptively adjust
the potential cooperation among diferent vehicles to form multi-agent learning groups, efectively improving
the utilization of edge resources. Diferent from studies in [133, 136] using big data samples for training models
to achieve resource allocation, authors in [74] propose an EI-based IoV framework to address the high dynamics
of computing task arrival, where imitation learning-based Branch-and-Bound (B&B) algorithms are utilized to
achieve excellent learning performance with a small number of training samples.

We summarize solutions for the application of IoV in Table 6.
2) UAV Network: Compared to conventional aircraft, UAVs are small in size, and their mobility and lexibility

have been greatly enhanced [76]. Mapping UAV networks from the physical world to the virtual world, based
on the computing resources of the virtual world, allows the application of UAV networks be enhanced with
the minimum cost. In the context of metaverse, the SCC-based technology can acquire the changes of wireless
communication and physical environment in real time, which can provide a strong support for the information
interaction among UAVs and their trajectory optimisation [41]. Based on the mobility of UAVs, UAV networks
can provide temporary resource support scenarios with temporary surges in computing and communication
needs, which can improve the user experience in the metaverse. Currently, due to the limitation of UAV sizes,
computing resources and energy it can carry are limited, and thus how to maximise the use of UAV’s limited
resources to provide persistent and reliable response mapping for virtual worlds is an important issue.

In order to improve the rational utilization of limited UAV resources, the authors of [73, 109, 135, 141] jointly
optimise UAV trajectory, wireless resource allocation and computing task oloading. The authors in [135]
propose a DRL-based algorithm to select movement trajectories for UAVs, thus ensuring that UAVs utilise limited
resources to serve users. To minimise energy consumption of UAVs, an EI-based oloading method of UAVs
to communities is proposed in [73]. The UAV service community and computational resource allocation are
selected through a joint trajectory design and task scheduling algorithm. Diferent from [73, 135], the authors
in [141] are concerned with the reliability of data transmission with limited resources. By jointly considering
the control of UAV manoeuvrability and transmission power as well as the scheduling of air-to-ground data
transmission, a bipolar optimisation problem is formulated, and an iterative optimisation algorithm based on
the direct multiple-shot method and the successive quadratic programming technique is proposed to solve
the above problem. Authors in [109] are concerned not only with UAV energy consumption and transmission
reliability, but also with UAV data transmission throughput. By jointly optimising the light trajectory and power
allocation of the human-machine, the lower bound of the UAV transmission throughput is improved while UAV
manoeuvrability and communication covertness can be guaranteed.
In order to ensure the privacy and security of user data during transmission and prevent eavesdroppers, the

authors in [27] consider the availability of perfect Channel State Information (CSI), and propose two diferent
optimisation algorithms. For the scenario where the user link and potential target location are ideal, a penalty-
based algorithm is used to obtain a high-quality solution and the phase shift of the IRS is solved by an optimisation
method. A robust algorithm based on the symbolic deterministic approach is proposed for the practical scenario
where the CSI is imperfect and the potential target location is uncertain.

Due to their mobility and lexibility properties, UAVs are widely used for communication after disasters and
in harsh environmental conditions [2, 7, 50, 129]. An RL-based emergency communication system is proposed
in [50], which aims to ensure the maximum UAV coverage by optimizing UAV energy consumption and UAV
path selection. Authors in [2] not only optimize the communication coverage, but also try to improve resource
utilization eiciency. The classical B&B algorithm based on relaxation induced neighborhood search is leveraged
to jointly optimize the UAV base station distribution and the user assignment to ensure the maximum number of
user connections with a limited number of UAVs. In addition, a DL-based dynamic UAV-to-UAV communication
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Table 7. Summary of solutions for UAV network

Ref. Description

Optimization metrics
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[135]
A UAV-to-everything heterogeneous data

communication framework

√
× × ×

√ √ √ √

[50] A DT-based ramp merging system
√ √ √

× × ×
√ √

[2]
Multi-standard UAV base station placement for

disaster management

√ √
×

√
× ×

√
×

[7]
A framework for DL-based dynamic

UAV-to-UAV communication models

√ √
×

√ √
× × ×

[129]
A 3D deployment system for multiple

UAV-mounted base stations

√ √
×

√ √
×

√ √

[141]
A joint optimisation framework for UAV
mobility control and data transmission
scheduling

× ×
√ √

× × × ×

[109]
A UAV covert communication system for

maximising minimum throughput
× ×

√
×

√ √
× ×

(ł
√
ž if the protocol satisies the property, ł×ž if not)

model is proposed in [7] to provide ireighters with a high-quality and wide-range ire video. The location
of the UAV, video resolution and transmission are jointly optimized based on a DL approach to improve the
long-term quality of experience. Authors in [129] propose a 3D deployment system with multiple UAV-mounted
base stations, aiming to maximize the UAV service coverage.

We summarize solutions for the application of UAV networks in Table 7.
3) SAGIN: The goal of the metaverse is to build a virtual world that encompasses the physical world; in

short, entities in the physical world are presented in the virtual world of the metaverse, which requires a vast
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Table 8. Summary of solutions for SAGINs.

Ref. Description

Optimization metrics
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[65]
An EC-based SAGIN resource scheduling

framework

√
×

√ √
× × × ×

[134]
A method based on DRL and virtual network

architecture

√
×

√ √
×

√
× ×

[104] A SAG-IoRT framework ×
√

×
√ √

×
√

×

[88]
A blockchain-based framework for secure

federated learning

√
×

√
× × × ×

√

[24]
A reconigurable SAGIN architecture based on

SDN and NFV
× ×

√ √
×

√
× ×

[90] A task oloading decision for SAGINs
√ √

×
√

× × × ×

[25]
An optimisation framework for task scheduling

and power control in SAGINs

√ √
×

√ √
× × ×

[20]
A topology-aware joint learning framework for

SAGINs

√
×

√ √
× × ×

√

(ł
√
ž if the protocol satisies the property, ł×ž if not)

number of end devices in the physical world to access the network. It is expected that by 2030, more than 500
billion IoT devices with sensing, computing and communication capabilities will be connected to the network,
and there will be a surge in the amount of data and information exchanged among diferent IoT devices [5].
Currently, terrestrial network segments are unable to provide stable network access to users in remote areas as
well as non-terrestrial areas due to limitations in coverage and communication capacity [88]. As a comprehensive
network, it mainly consists of an air-based network, a space-based network and a ground-based network [81].
Combining the strengths of all three, SAGIN signiicantly improves network coverage, capacity and lexibility.
It can provide a broad coverage for the realisation of the metaverse by rationally allocating computing and
communication resources according to diferent applications of the metaverse.

SAGIN ofers a higher quality of seamless connectivity than traditional communication networks. Due to the
heterogeneous, time-varying and self-organizing nature of SAGINs, their deployment face huge challenges in
terms of heterogeneous and limited network resources, and large communication delay. Thus, resource allocation
of SAGINs is extensively studied by the authors in [24, 65, 104, 134]. An EC-based framework for SAGINs is
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presented in [65], which aims to minimise the computational latency among IoT devices through the joint
scheduling of computational tasks, bandwidths and drone locations. A DRL-based resource scheduling approach
for SAGINs is presented in [134]. The authors model heterogeneous resource scheduling as a virtual network
embedding problem and solve it by a DRL-based cross-domain algorithm. Concerned about the coordination of
heterogeneous resources in dynamic networks, the authors in [24] propose a reconigurable SAGIN architecture
based on software-deined networking and virtualisation of network functions. The architecture introduces
virtual link rate adaptation among virtual network functions to improve the utilisation of network resources.
Unlike [24, 65, 134], which focus only on the optimisation of resource utilisation and latency, the authors
in [104] also focus on the energy consumption of UAV-assisted SAGINs. Joint optimisation of device connection
scheduling, power control and UAV trajectory selection is performed, and a three-block resource allocation
method is proposed, which employs variable substitution and successive convex approximation for real-time
resource allocation to maximise resource utilisation while minimising energy consumption of UAVs.

Due to the limited computational resources of UAVs and satellites, an efective oloading decision and compu-
tational resource allocation scheme is crucial. The authors in [90] study the problem of resource oloading and
computational resource allocation in SAGINs. Joint optimisation of wireless device latency, UAV energy consump-
tion and computational task oloading is performed, and a minimisation method based on block-continuous
upper bounds is proposed. An optimisation framework for task scheduling and power control is presented in [25].
The framework jointly optimises task scheduling and power control while considering intermittent time windows,
and proposes an approximation algorithm, i.e., a balanced energy and maximisation algorithm.

Because of the heterogeneous of SAGINs, the large network space, and the big number of end-users accessing
the network, how to guarantee the privacy and security of users in the SAGIN is also an issue of concern. Based
on the advantage that FL enables end nodes to complete the global model without uploading the original private
data, the authors in [20, 88] propose to secure the end data of the SGAIN based on FL. Authors in [88] combine
blockchain and FL to propose a joint asynchronous dominant participant selection algorithm to implement traic
oloading in the SAGIN. Authors in [20] propose a FL-based topology-aware algorithm to secure end-user data
by enabling the aggregation of multi-level models.

We summarize the solutions for the application of SAGINs in the metaverse in Table 8.
Lesson 2: It is clear that open space scenarios in the metaverse are highly dynamic, which place high demands

on latency and reliability. Joint communication and computing resource scheduling is currently used to reduce data
transmission latency and improve transmission reliability, based on techniques such as EC and ML. The network
diversity can lead to heterogeneous types of user requirements. Current sensed data information combined with
historical can be utilized to support DT to make optimal decisions for resource scheduling.

Nevertheless, the implementation of the metaverse requires the real-time interaction of massive data generated
in both virtual and real worlds, and the limited computing resources of terminals and spectrum resources in
the network make it diicult to cope with latency sensitive requirements in highly dynamic scenarios. The
development of SCC technologies can make full use of the limited spectrum resources, enable fast beam alignment,
eiciently integrate computing and storage resources of base stations and terminal devices, and enable eicient
collaboration among smart devices.

5 RESEARCH CHALLENGES AND OPEN ISSUES

In the previous section, we discuss and summarize the research based on SCC technologies to solve related
problems in the metaverse. However, there are still some research challenges and open issues including data
mapping, interaction between the physical world and the virtual world, data synchronization and multimodal
data fusion, which are discussed as follows.
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5.1 SCC-based Data Mapping

The realization of the metaverse requires the support of a large amount of data information in reality, and the
current limited wireless channel resources limit the realization of the metaverse. In order to break through
the limitation of channel resources, Multiple-Input Multiple-Output (MIMO) technology is mainly used to
improve bandwidth resources and channel utilization. However, traditional MIMO technology mainly focuses on
insuicient load, and cannot cope with the current situation that the number of IoV terminals is much larger
than that of base stations. Therefore, seeking a technology that can achieve high-reliability, low-latency data
mapping from the physical world to the virtual world is a direction worth researching.
At present, some scholars use NOMA technology to assist the implementation of MIMO. Although MIMO-

NOMA technology can help terminals transmit data through power domain multiplexing, the design of its
beamformers requires accurate channel state information. However, accurate channel status information is not
easy to obtain, and the current algorithms used for NOMA produce unacceptable signaling overhead and high
computational complexity in the face of large-scale user connections, which cannot meet the requirements of ultra-
low latency in the metaverse. Based on the collaboration of communication, perception and computing technology,
SCC can leverage computing resources of the ubiquitous network to quickly analyze the perceived environment
and channel information when performing virtual-real mapping. Nevertheless, SCC puts the communication
signal and the perception signal in the same transmission channel, which causes interference when transmitted
at the same time. The current multi-access technology cannot avoid the unacceptable signal error caused by
concurrent users, so developing an efective multiple-access technology for SCC is also a topic worth studying.

5.2 SCC-based Interaction Between The Physical World and The Virtual World

At present, the metaverse is still in a state of łcute newž. Besides technical limitations, the entrance problem of
meta-universe applications also needs to be solved urgently. Current VR technology can realize the interaction
between the physical world and the virtual world. However, the current VR device mainly presents the acquired
video stream in the user’s ield of vision, and the obtained application scenarios are ixed and cannot change
with the real world scene. The current terahertz communication technology can achieve large-bandwidth and
low-latency data transmission, but its reliability needs to be improved. Therefore, designing a reliable virtual and
real data interaction with ultra-low latency to solve the metaverse entrance problem is necessary.

The purpose of the metaverse is to provide users with a realistic virtual world and an immersive experience. A
realistic virtual world requires not only visual and auditory information, but also other perceptual information
such as touch, smell, and taste to improve the user’s real experience. The current VR/AR technology can only
provide auditory and visual information in the virtual world, and the acquisition of other sensory information
such as touch is still an open issue. The current brain network technology can realize the access to many
sensory information of the user by acquiring the relevant neural information of the user’s brain, but the diferent
sensory information makes the feature dimension increase abruptly, and the reliability of information interaction
and the classiication of diferent sensory information need to be tackled. Although some solutions have been
proposed to realize interactive information interference detection [112], accurate information classiication [125]
and reduction of information feature dimensionality [114]. Facing a large number of users in the metaverse,
multisensory information acquisition still has challenges in practice: 1) The acquisition and processing of multi-
sensory information and the rendering of virtual world scenes have a huge demand on computing resources; 2)
The increase in computing resource demands is accompanied by a sharp increase in energy consumption; and 3)
High energy consumption eventually leads to increasing resource costs for users to enter the metaverse.
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5.3 Data Synchronization in The Metaverse

The metaverse is a virtual world consisting of a mapping of objects in the physical world. There are various
types of service providers in the metaverse, and each may require additional information to enhance its virtual
services. For example, a virtual tour provider intends to ofer the user with the nearest live concert or some
event information while conducting a tour. The use of traditional ixed and static sensors to collect data of the
physical world can meet the requirements, but the location of surrounding activities cannot be static, and diferent
activities require diferent perception accuracy. Deploying static sensors is expensive, and can be challenging in
rural and mountainous areas. Thus, how to dynamically obtain data from the physical world and achieve ultra-low
latency data mapping to ensure near real-time virtual and real data synchronization needs to be considered.

Given the lexibility of drones and autonomous vehicles, many researchers leverage a set of mobile IoT devices
to address the aforementioned static sensor deployments [61]. Although mobile IoT devices can dynamically
obtain data from the physical environment, in the face of massive data processing and transmission, computing
resources of these devices are not enough to support the metaverse’s requirements for real-time virtual-real data
synchronization. To solve the above problems, the use of SCC technology can realize the multi-agent collaboration
between mobile IoT devices and nearby base stations, to ensure the dynamic acquisition and timely processing of
environmental data. However, these agents are vulnerable to malicious attacks, and how to ensure data security
is challenging to deal with.

5.4 SCC-Enabled Multimodal Data Fusion

As a virtual world created by the digital avatar of physical world afairs, the metaverse needs to obtain massive
real-world data to maintain the operation of the metaverse. The metaverse intends to provide users with a
highly immersive experience, so it needs to acquire and process data from various modalities in the real world.
Multimodal data can view things from diferent angles and dimensions, achieve ine-grained analysis, and
restore real-world afairs in the virtual world. However, since data from diferent modes may represent the
same information, information redundancy inevitably occurs when multimodal data fusion is conducted. In the
scenario of the metaverse, information redundancy not only generates a huge waste of resources, but also greatly
aggravates the congestion of wireless networks. Consequently, how to efectively integrate multimodal data in
the metaverse is a direction worth studying.

At present, most multimodal data fusion algorithms use the human way of thinking to abstract the semantics
of diferent modal information by matrix decomposition and linear combination. Nevertheless, this method not
only generates unnecessary energy consumption, but also cannot meet the delay requirements of applications in
highly dynamic environments. SCC technology can maximize the utilization eiciency of limited computing
resources and ensure the speed and accuracy of data fusion. However, SCC technology requires novel channel
models to meet the transmission reliability requirements of communication and sensing integrated signals. In
addition, the implementation of SCC technology demands for strict hardware conditions, which greatly increases
the realization diiculty of metaverse applications.

5.5 AI-Based Heterogeneous Resource Allocation for Metaverse

The realisation of metaverse not only relies on the terrestrial base station network, but also requires the support
of multiple network resources such as UAV network, SAGIN network and IoV. The use of multiple heterogeneous
network resources can efectively alleviate the pressure of resource shortage caused by ultra-large-scale user
access. However, diferent network architectures have diferent requirements for data transmission rates, reliability,
and delay, and thus how to ensure the efective usage of heterogeneous network resources is an interesting topic.
Current research uses NFV to unify the scheduling of resources, which can reasonably allocate relevant

resources according to diferent applications and ensure the QoS. However, the current NFV is the interface of
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each major service provider, and it is impossible to achieve a uniied interface among diferent service providers.
AI, as a technology that simulates intelligent thinking of human beings, can make reasonable decisions by
comprehensively utilising the relevant data. By placing AI algorithms at the network edge and in the cloud, it is
possible to reasonably allocate relevant resources for each application based on the acquired data. Although AI
algorithms can make reasonable decisions, the application of AI also brings new security issues. For example,
the reliability of models trained by AI algorithms, and whether the data of learning models are safe and reliable.
Therefore, at present, how to ensure the reliability and trustworthiness of AI is also an issue worth considering.

5.6 AI-Enabled Privacy and Security Issues of Metaverse

The realisation of metaverse enables users to experience the joys of outdoor living without having to leave their
houses. People participate in metaverse life in the form of digital avatars through smart terminal devices, enabling
an immersive experience of activities such as shopping, partying and working. While real-time immersive
experiences in the metaverse provide users with perfect sensory pleasure of the virtual world, they also bring
corresponding challenges: 1) The secure integration of sensitive data when users in the physical world interact
with their digital avatars in the virtual world; 2) The boundaries between virtual and real worlds become
increasingly blurred as the metaverse evolves, which makes the metaverse hyperspatial and this greatly increases
the meta complexity of trust management in meta-universes; 3) Users can freely access diferent meta-universes
simultaneously in diferent scenarios and interaction modes, which also poses a challenge to ensure rapid
service authorisation, compliance auditing, and accountability enforcement for seamless service mitigation and
multi-source data fusion.
At present, based on the characteristics of invariance, decentralisation and interoperability, blockchain can

provide a trustworthy interaction environment for the realisation of the metaverse. Based on the irreversible
characteristics of blockchain, it can efectively prevent malicious users from tampering with their behavioural
information and conceal their malicious behaviour in the virtual world. However, the realisation of the metaverse
requires the support of real-time massive data, and it is impossible to process such a huge amount of data in real
time only based on the blockchain. AI with blockchain can intelligently select safe and reasonable oloading
objects for computing tasks, to improve the eiciency and throughput of blockchain, and provide a safer virtual
experience for metaverse users. However, when the AI model is being trained, it needs to obtain the information
of various intelligent terminals, and how to distinguish the malicious information to ensure the reliability of the
AI training model is also an issue to be considered.

6 CONCLUSIONS

In this article, we irst introduce the architecture, current development and related characteristics of the metaverse.
Then, the enabling technologies that underpin the implementation of the metaverse, such as 6G networks, DT, EI
and blockchain, are introduced. Focusing on enabling technologies, we point out the important role of SCC for
the development of the metaverse. After that, we discuss solutions or metaverse scenarios such as smart home,
smart factory, smart medical, smart transportation, UAV network and SAGIN in terms of recognition accuracy,
communication throughput, communication latency, user data privacy and communication reliability. Finally, we
point out some research challenges and future research directions of SCC for the metaverse.
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